Molecular Adaptations of Enzymes from Thermophilic and Psychrophilic Organisms

  • J. L. Arpigny
  • G. Feller
  • S. Davail
  • S. Génicot
  • E. Narinx
  • Z. Zekhnini
  • Ch. Gerday
Part of the Advances in Comparative and Environmental Physiology book series (COMPARATIVE, volume 20)


Although the average temperature on earth is probably of the order of 15 °C, the environments with extreme temperature in which life can be considered possible are very common on the surface of the planet.


Triosephosphate Isomerase Xylose Isomerase Molecular Adaptation Aromatic Interaction Thermophilic Enzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baldwin RL, Eisenberg D (1987) Protein stability. In: Oxender DL, Fox CF (eds) Protein engineering. Liss, New York, pp 127–148Google Scholar
  2. Baross JA, Deming JW (1983) Growth of black smoker bacteria at temperature of at least 250°C. Nature 303: 423–426CrossRefGoogle Scholar
  3. Bealin-Kelly F, Kelly CT, Fogarty WM (1991) Studies on the thermostability of the a-amylase of Bacillus caldovelox. Appl Microbiol Biotechnol 36: 332–336CrossRefGoogle Scholar
  4. Betzel C, Klupsch S, Papendorf G, Hastrup S, Branner S, Wilson KS (1992) Crystal structure of the alkaline proteinase Savinase from Bacillus lentus at 1.4 A resolution. J Mol Biol 223: 427–445PubMedCrossRefGoogle Scholar
  5. Blake PR, Park JB, Bryant FO, Aono S, Magnuson JK, Eccleston E, Howard JB, Summers MF, Adams MW (1991) Determinants of protein hyperthermostability: purification and amino acid sequence of rubredoxin from the hyperthermophilic archaebacterium Pyrococcus furiosus and secondary structure of the zinc adduct by NMR. Biochemistry 30: 10885–10895PubMedCrossRefGoogle Scholar
  6. Brock TD (1985) Life at high temperature. Science 230: 132–138PubMedCrossRefGoogle Scholar
  7. Bryan PN, Rollence ML, Pantoliano MW, Wood J, Finzel BC, Gilliland GL, Howard AJ, Poulos TL (1986) Proteases of enchanced stability: characterization of a thermostable variant of subtilisin. Proteins Struct Funct Gen 1: 326–334CrossRefGoogle Scholar
  8. Buisson G, Duee E, Haser R, Payan F (1987) Three dimensional structure of porcine pancreatic a-amylase at 2.9 A resolution. Role of calcium in structure and activity. EMBO J 6: 3909–3916Google Scholar
  9. Burley SK, Petsko GA (1985) Aromatic-Aromatic Interaction: a mechanism of protein strucutre stabilization. Science 229: 23–28PubMedCrossRefGoogle Scholar
  10. Burley SK, Petsko GA (1988) Weakly polar interactions in proteins. Adv Protein Chem 39: 125–189PubMedCrossRefGoogle Scholar
  11. Caffrey MS, Cusanovich MA (1991) Lysins in the amino-terminal a-helix are important to the stability of Rhodobacter capsulatus cytochrome c2. Biochemistry 30: 9238–9241PubMedCrossRefGoogle Scholar
  12. Chaffotte AF, Guillou Y, Goldberg ME (1992) Inclusion bodies of the thermophilic endoglucanase D from Clostridium thermocillium are made of native enzyme that resist 8M urea. Eur J Biochem 205: 369–373PubMedCrossRefGoogle Scholar
  13. Chou PY, Fasman GD (1978) Empirical predictions of protein conformation. Annu Rev Biochem 47: 251–276PubMedCrossRefGoogle Scholar
  14. Clarke A (1983) Life in cold water: the physiological ecology of polar marine ectotherms. Oceanogr Mar Biol Annu Rev 21: 341–453Google Scholar
  15. Creighton TE (1991) Stability of folded conformations. Curr Opin Struct Biol 1: 5–16 Daniel RM, Corvan DA, Morgan HW, Curran MP (1982) A correlation between protein thermostability and resistance to proteolysis. Biochem J 207: 641–644Google Scholar
  16. Davail S (1992) Adaptations moléculaires d’une protease isolée d’une bactérie du milieu marin antarctique. PhD Thesis, University of Liége, BelgiumGoogle Scholar
  17. Davail S, Feller G, Narinx E, Gerday C (1992) Sequence of the subtilisin-encoding gene from an antarctic psychrotroph Bacillus TA41. Gene 119: 143–144PubMedCrossRefGoogle Scholar
  18. Dekker K, Yamagata H, Sakagushi K, Udaka S (1991) Xylose (Glucose) isomerase gene from the thermophile Thermus thermophilus: cloning, sequencing, and comparison with other thermostable xylose isomerases. J Bacteriol 173: 3078–3083PubMedGoogle Scholar
  19. Dill KA, Alonso DO, Hutchinson K (1989) Thermal stabilities of globular proteins. Biochemistry 28: 5439–5449PubMedCrossRefGoogle Scholar
  20. Eijsink VG, Vriend G, van den Burg B, van der Zee JR, Venema G (1992) Increasing the thermostability of a neutral protease by replacing positively charged amino acids in the N-terminal turn of a-helices. Protein Eng 5: 165–170PubMedCrossRefGoogle Scholar
  21. Feller G, Thiry M, Arpigny JL, Gerday C (1991) Cloning and expression in Escherichia coli of three lipase-encoding genes from the psychrotropic antarctic strain Moraxella TA144. Gene 102: 111–115PubMedCrossRefGoogle Scholar
  22. Feller G, Lonhienne T, Deroanne C, Libioulle C, van Beeumen J, Gerday C (1992) Purification, characterization and nucleotide sequence of the thermo-labile a-amylase from the antarctic psychrotroph Alteromonas haloplanctis A23. J Biol Chem 267: 5217–5221PubMedGoogle Scholar
  23. Flory JG (1956) Theory of elastic mechanisms in fibrous protein. J Am Chem Soc 78: 5222–5235CrossRefGoogle Scholar
  24. Fontana A (1988) Structure and stability of thermophilic enzymes. Studies on thermolysin. Biophys Chem 29: 181–193PubMedCrossRefGoogle Scholar
  25. Fontana A (1991) Analysis and modulation of protein stability. Curr Opin Biotech 2: 551–560 Franks F ( 1985 ) Biophysics and biochemistry at low temperatures. Cambridge University Press, CambridgeGoogle Scholar
  26. Fujita SC, Oshima T, Imahori K (1976) Purification and properties of D-glyceraldehyde3-phosphate dehydrogenase from an externe thermophile, Thermus thermophilus strain HB8. Eur J Biochem 64: 57–68PubMedCrossRefGoogle Scholar
  27. Génicot S (1993) Proposed 3D structure of trypsin from trout (Salmo gairdneri) and antarctic fish (Notothenia neglecta). PhD Thesis, University of Liége, BelgiumGoogle Scholar
  28. Génicot S, Feller G, Gerday C (1988) Trypsin from antarctic fish (Paranotothenia magellanica) as compared with trout (Salmo gairdneri) trypsin. Comp Biochem Physiol 90B: 601–609CrossRefGoogle Scholar
  29. Goldenberg DP (1985) Dissecting the roles of individual interactions in protein stability: lessons from a cricularized protein. J Cell Biochem 29: 321–335PubMedCrossRefGoogle Scholar
  30. Grütter MG, Hawkes RB, Matthews BW (1979) Molecular basis of thermostability in the lysozyme from bacteriophage T4. Nature 277: 667–669PubMedCrossRefGoogle Scholar
  31. Gupta MN, Mattiasson B (1992) Unique applications of immobilized proteins in bioanalytical systems. Methods Biochem Anal 36: 1–34PubMedCrossRefGoogle Scholar
  32. Hall JG (1985) The adaptation of enzymes to temperature: catalytic characterization of glucose-phosphate isomerase homologues isolated from Mytilus edulis and Isognomon alatus, bivalve molluscs inhabiting different thermal environments. Mol Biol Evol 2: 251–269PubMedGoogle Scholar
  33. Hazel JR, Prosser CL (1974) Molecular mechanisms of temperature compensation in poikilotherms. Biol Rev 54: 620–677Google Scholar
  34. Hecht MH, Sturtevant JM, Sauer RT (1984) Effect of single amino acid replacements on the thermal stability of the NH2-terminal domain of phage repressor. Proc Natl Acad Sci USA 81: 5685–5689PubMedCrossRefGoogle Scholar
  35. Hochachka P (1991) Temperature: the ectothermy option. In: Hochachka P, Mommsen T (eds) Biochemistry and molecular biology of fishes, vol 1. Elsevier, New York, pp 313–322Google Scholar
  36. Hochachka P, Somero GN (1984) Biochemical Adaptation. Princeton University Press, New Jersey, pp 355–449Google Scholar
  37. Hol WG, van Duinen PT, Berendsen HJ (1978) The a-helix dipole and the properties of proteins. Nature 273: 443–446PubMedCrossRefGoogle Scholar
  38. Huber R, Kurr M, Jannasch HW, Stetter KO (1989) A novel group of abyssal methanogenic archaebacteria (Methanopyrus) growing at 110 °C. Nature 342: 833–834CrossRefGoogle Scholar
  39. Ikai A (1980) Thermostability and aliphatic index of globular proteins. J Biochem (Tokyo) 88: 1895–1898Google Scholar
  40. Imada K, Sato M, Tanaka N, Katsube Y, Matsuura Y, Oshima T (1991) Three-dimensional structure of a highly thermostable enzyme, 3-iso-propylmalate dehydrogenase of Thermus thermophilus at 2.2 A resolution. J Mol Biol 222: 725–738PubMedCrossRefGoogle Scholar
  41. Karplus PA, Schulz GE (1985) Prediction of chain flexibility in proteins. Naturwissenschaften 72: 212–213CrossRefGoogle Scholar
  42. Klibanov AM (1979) Enzyme stabilization by immobilization. Anal Biochem 93: 1–25PubMedCrossRefGoogle Scholar
  43. Kobori H, Sullivan CW, Shizuya H (1984) Heat-labile alkaline phosphatase from Antarctic bacteria: rapid 5’ end-labelling of nucleic acids. Proc Nat Acad Sci USA 81: 6691–6695PubMedCrossRefGoogle Scholar
  44. Kuhn W, Majer H (1956) The self cross-linking of macromolecules. Makromol Chem 16–19: 239–245CrossRefGoogle Scholar
  45. Kwon ST, Matsuzawa H, Ohta T (1988) Determination of the positions of the disulfide bonds in aqualysin I (a thermophilic alkaline serine protease) of Thermus aquaticus YT-1. J Biochem (Tokyo) 104: 557–559Google Scholar
  46. Low PS, Bada JL, Somero GN (1973) Temperature adaptation of enzymes: roles of the free energy, the enthalpy and the entropy of activation. Proc Natl Acad Sci USA 70: 430–432PubMedCrossRefGoogle Scholar
  47. Matsumura M, Becktel WJ, Levitt M, Matthews BW (1989) Stabilization of phage T4 lysozyme by engineered disulfide bonds. Proc Natl Acad Sci USA 86: 6562–6566PubMedCrossRefGoogle Scholar
  48. Matthews BW (1987) Genetic and structural analysis of the protein stability problem. Biochemistry 26: 6885–6888PubMedCrossRefGoogle Scholar
  49. Matthews BW (1991) Mutational analysis of protein stability. Curr Opin Struct Biol 1: 17–21CrossRefGoogle Scholar
  50. Matthews BW, Nicholson H, Becktel WJ (1987) Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding. Proc Natl Acad Sci USA 84: 6663–6667PubMedCrossRefGoogle Scholar
  51. Matthews CR (1991) The mechanism of protein folding. Curr Opin Struct Biol 1: 28–35CrossRefGoogle Scholar
  52. Menendez-Arias L, Argos P (1989) Engineering protein thermal stability. Sequence statistics point to residue substitutions in a-helices. J Mol Biol 206: 397–406Google Scholar
  53. Merkler DJ, Farrington GK, Wedler FC (1981) Protein thermostability. Int J Pept Protein Res 18: 430–442PubMedCrossRefGoogle Scholar
  54. Mitchinson C, Wells JA (1989) Protein engineering of disulfide bonds in subtilisin BPN’. Biochemistry 28: 4807–4815PubMedCrossRefGoogle Scholar
  55. Mohr PW, Krawiec S (1980) Temperature characteristics and Arrhenius plots for nominal psychrophiles, mesophiles and thermophiles. J Gen Microbiol 121: 311–317PubMedGoogle Scholar
  56. Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39: 144–167PubMedGoogle Scholar
  57. Mozhaev VV, Martinek K (1984) Structure-stability relationships in proteins: new approaches to stabilizing enzymes. Enzyme Microb Technol 6: 50–59CrossRefGoogle Scholar
  58. Mozhaev VV, Berezin IV, Martinek K (1988) Structure-stability relationships in proteins: fundamental tasks and strategy for the development of stabilized enzyme catalysts for biotechnology. CRC Crit Rev Biochem 23: 235–281PubMedCrossRefGoogle Scholar
  59. Mrabet NT, van den Broeck A, van den Brande I, Stanssens P, Laroche Y, Lambeir A-M, Matthijssens G, Jenkins J, Chiadmi M, van Tilbeurgh H, Rey F, Janin J, Quax WJ, Lasters I, de Maeyer M, Wodak SJ (1992) Arginine residues as stabilizing elements in proteins. Biochemistry 31: 2239–2253Google Scholar
  60. Nemethy G, Leach SJ, Scheraga HA (1966) The influence of amino acid side chains on the free energy of helix-coil transition. J Phys Chem 70: 998–1004CrossRefGoogle Scholar
  61. Oefner C, Darcy A, Daly JJ, Gubernator K, Charnas RL, Heinze I, Hubschwerlen C, Winkler FK (1990) Refined crystal structure of ß-lactamase from Citrobacter freundii indicates a mechanism for ß-lactam hydrolysis. Nature 343: 284–288PubMedCrossRefGoogle Scholar
  62. Perutz MF (1978) Electrostatic effects in proteins. Science 201: 1187–1191PubMedCrossRefGoogle Scholar
  63. Perutz MF, Raidt H (1975) Stereochemical basis of heat stability in bacterial ferredoxins and in haemoglobin A2. Nature 255: 256–259PubMedCrossRefGoogle Scholar
  64. Privalov PL (1979) Stability of proteins. Adv Protein Chem 33: 167–241PubMedCrossRefGoogle Scholar
  65. Privalov PL, Gill SJ (1988) Stability of protein structure and hydrophobic interaction. Adv Protein Chem 39: 191–234PubMedCrossRefGoogle Scholar
  66. Querol E, Parrilla A (1987) Tentative rules for increasing the thermostability of enzymes by protein engineering. Enzyme Microb Technol 9: 238–244CrossRefGoogle Scholar
  67. Rentier-Delrue F, Mande SC, Moyens S, Terpstra P, Mainfroid V, Goraj K, Lion M, Hol WGJ, Martial J (1993) Cloning and overexpression of the triosephosphate isomerase genes from psychrophilic and thermophilic bacteriae. Structural comparison of the predicted protein sequences. J Mol Biol 229: 85–93Google Scholar
  68. Sanbongi Y, Igarashi Y, Kodama T (1989) Thermostability of cytochrome c-552 from the thermophilic hydrogen-oxidizing bacterium Hydrogenobacter thermophilus Biochemistry 28: 9574–9578Google Scholar
  69. Sancho J, Serrano L, Fersht AR (1992) Histidine residues at the N- and C-termini of a-helices: perturbed pKes and protein stability. Biochemistry 31: 2253–2258PubMedCrossRefGoogle Scholar
  70. Schultz GE, Schirmer RH (1979) Principles of Protein Structure. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  71. Shoemaker KR, Kim PS, York EJ, Stewart JM, Baldwin RL (1987) Tests of the helix dipole model for stabilisation of a-helices. Nature 326: 563–567PubMedCrossRefGoogle Scholar
  72. Siezen RJ, de Vos WM, Leunissen JA, Dijkstra BW (1991) Homology modelling and protein enginnering strategy of subtilases, the family of subtilisin-like serine proteinases. Protein Eng 4: 719–737Google Scholar
  73. Somero GN (1969) Enzymatic mechanisms of temperature compensation: immediate and evolutionary effects of temperature on enzymes of aquatic poikilotherms. Am Nat 103: 517–530CrossRefGoogle Scholar
  74. Somero GN (1977) Temperature as a selective factor in protein evolution: the adaptational strategy of “compromise”. J Exp Zool 194: 175–188CrossRefGoogle Scholar
  75. Spiess FN, MacDonald KL, Atwater T (1980) East pacific rise: hot springs and geophysical experiments. Science 207: 1421–1432PubMedCrossRefGoogle Scholar
  76. Steel DM, Walker JM (1991) Thermostable proteins. Life Chem Rep 8: 49–96Google Scholar
  77. Stokes JL (1967) Heat sensitive enzymes and enzyme synthesis in psychrophilic microorganisms. Publ Am Assoc Adv Sci 84: 311–323Google Scholar
  78. Storey KB, Storey JM (1988) Freeze tolerance in animals. Physiol Rev 68: 27–84PubMedGoogle Scholar
  79. Suzuki Y, Imai T (1982) Abnormally high tolerance against proteolysis of an exo-oligo1,6-glucosidase from a thermophile Bacillus thermoglucosidius KP1006, compared with its mesophilic counterpart from Bacillus cereus ATCC7064. Biochim Biophys Acta 705: 124–126PubMedCrossRefGoogle Scholar
  80. Suzuki Y, Oishi K, Nakano H, Nagayama T (1987) A strong correlation between the increase in number of proline residues and the rise in thermostability of five Bacillus oligo-1,6glucosidases. Appl Microbiol Biotechnol 26: 546–551CrossRefGoogle Scholar
  81. Takagi H, Takahashi T, Momose H, Inouye M, Maeda Y, Matsuzawa H, Ohta T (1990) Enhancement of the thermostability of subtilisin E by introduction of a disulfide bond engineered on the basis of structural comparison with a thermophilic serine protease. J. Biol Chem 265: 6874–6878Google Scholar
  82. Tanford C (1970) Protein denaturation. Adv Protein Chem 24: 1–95PubMedCrossRefGoogle Scholar
  83. Teplyakov AV, Kuranova IP, Harutyhunyan EH, Vainshtein BK, Frömmel C, Höhne WE, Wilson KS (1990) Crystal structure of thermitase at 1.4 A resolution. J Mol Biol 214: 261–279PubMedCrossRefGoogle Scholar
  84. Tomazic SJ, Klibanov AM (1988) Why is one Bacillus a-amylase more resistant against irreversible thermoinactivation than another? J Biol Chem 263: 3092–3096PubMedGoogle Scholar
  85. Ushakov B (1964) Thermostability of cells and proteins in poikilotherms. Physiol Rev 44: 518–560PubMedGoogle Scholar
  86. Veronese FM, Boccu E, Schiavon O, Grandi C, Fontana A (1984) General stability of thermophilic enzymes: studies on 6-phosphogluconate dehydrogenase from Bacillus stearothermophilus and yeast. J Appl Biochem 6: 39–47PubMedGoogle Scholar
  87. Vihinen M (1987) Relationship of protein flexibility to thermostability. Protein Eng 1: 477–480 Villafranca JE, Howell EE, Oatley SJ, Xuong N, Kraut J (1987) An engineered disulfide bond in dihyrofolate reductase. Biochemistry 26: 2182–2189Google Scholar
  88. Voordouw G, Milo C, Roche RS (1976) Role of bound calcium ions in thermostable, proteolytic enzymes. Separation of intrinsic and calcium ion contributions to the kinetic thermal stability. Biochemistry 15: 3716–3723Google Scholar
  89. Watanabe K, Chishiro K, Kitamura K, Suzuki Y (1991) Proline residues responsible for thermostability occur with high frequency in the loop regions of an extremely thermostable oligo-1,6-glucosidase from Bacillus thermoglucosidasius KP 1006. J Biol Chem 266: 24287–24294PubMedGoogle Scholar
  90. Wetzel R (1987) Harnessing disulfide bonds using protein engineering. Trends Biochem Sci 12: 478–482CrossRefGoogle Scholar
  91. Wetzel R, Perry LJ, Baase WA, Becktel WJ (1988) Disulfide bonds and thermal stability in T4 lysozyme. Proc Natl Acad Sci USA 85: 401–405PubMedCrossRefGoogle Scholar
  92. Wrba A, Schweiger A, Schultes V, Jaenicke R (1990) Extremely thermostable D-glyceraldehyde-3-phosphate dehydrogenase from the eubacterium Thermotoga maritima. Biochemistry 29: 7584–7592PubMedCrossRefGoogle Scholar
  93. Zekhnini Z (1993) Adaptations moléculaires d’une ß-lactamase produite par une bactérie antarctique. PhD Thesis, University of Liège, BelgiumGoogle Scholar
  94. Zülli F, Schneiter R, Urfer R, Zuber H (1991) Engineering thermostability and activity of lactate dehydrogenases from bacilli. Biol Chem Hoppe-Seyler 372: 363–372PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • J. L. Arpigny
  • G. Feller
  • S. Davail
  • S. Génicot
  • E. Narinx
  • Z. Zekhnini
  • Ch. Gerday
    • 1
  1. 1.Laboratoire de Biochimie-Inst.Chimie (B6) Université de Liège au Sart TilmanLiège 1Belgium

Personalised recommendations