Advertisement

Detection and Characterization of Tumor Cells in Bone Marrow of Patients with Primary Breast Cancer

  • I. J. Diel
  • S. D. Costa
  • M. Kaufmann
  • G. Bastert
Conference paper

Abstract

Destructive growth and metastasis characterize malignant tumors. As a rule, death results from the consequences of the metastasis. Although only isolated aspects of the metastatic process have been studied, regularities have been identified that are valid for every tumor. For example, proliferating neoplastic cells reach the basal membrane, penetrate it, and make their way into the connective tissue, where they have access to blood and lymph vessels and are carried to other organ systems. After the tumor cells or emboli are caught in the capillary network or the sinusoids of bone marrow, extravasation and renewed proliferation ensues [1]. The processes regulating these events are largely unknown. Liotta et al. [2] referred to the discordance between the regulation of tumor growth and metastasis in breast cancer, which underscores the difficulties of predicting the course of the disease.

Keywords

Breast Cancer Bone Marrow Bone Metastasis Primary Breast Cancer Cell Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bertolini DR, Mundy GR (1989) Metastasis to bone in mammals. In: Gorelik EL (ed) Metastasis/Dissemination. Kluwer, Dordrecht, pp 72–82Google Scholar
  2. 2.
    Liotta LA, Steeg PS, Stetler-Stevenson WG (1991) Cancer metastases and angiogenesis: an imbalance of positive and negative regulation. Cell 64: 327–336PubMedCrossRefGoogle Scholar
  3. 3.
    Dickson RB, Lippman ME (1992) Molecular determinants of growth, angiogenesis and metastases in breast cancer. Semin Oncol 19: 286–298PubMedGoogle Scholar
  4. 4.
    Graeff H, Jaenicke F, Schmitt M (1991) Klinische und prognostische Bedeutung tumorassoziierter Proteasen in der gynäkologischen Onkologie. Geburtshilfe Frauenheilkd 51: 90–99PubMedCrossRefGoogle Scholar
  5. 5.
    Duffy MJ (1992) The role of proteolytic enzymes in cancer invasion and metastasis. Clin Exp Metastasis 10: 145–155PubMedCrossRefGoogle Scholar
  6. 6.
    Weiss L, Gilbert HA (1981) Bone metastasis. Hall, BostonGoogle Scholar
  7. 7.
    Galasko CSB (1986) Skeletal metastases. Butterworth, LondonGoogle Scholar
  8. 8.
    Regato del JA (1977) Pathways of metastatic spread of malignant tumors. Semin Oncol 4: 33–38PubMedGoogle Scholar
  9. 9.
    Southby J, Kissin MW, Danks JA et al. (1990) Immunohistochemical localization of parathyroid hormone-related protein in breast cancer. Cancer Res 50: 7710–7716PubMedGoogle Scholar
  10. 10.
    Powell GJ, Southby J, Danks JA et al. (1991) Localization of parathyroid-related protein in breast cancer metastases: increased incidence in bone compared with other sites. Cancer Res 51: 3059–3061PubMedGoogle Scholar
  11. 11.
    Bundred NJ, Walker RA, Ratcliffe WA et al. (1992) Parathyroid hormone related protein and skeletal morbidity in breast cancer. Eur J Cancer 28: 690–692PubMedCrossRefGoogle Scholar
  12. 12.
    Orr FW, Millar-Book W, Singh G (1990) Chemotactic activity of bone and platelet derived TGF-beta for bone metastasizing rat Walker 256 carcinosarcoma cells. Invasion Metastasis 10: 241–252PubMedGoogle Scholar
  13. 13.
    Scher HI, Yagoda A (1987) Bone metastases: pathogenesis, treatment and rationale for use of resorption inhibitors. Am J Med 82 [Suppl 2A]: 6–28PubMedCrossRefGoogle Scholar
  14. 14.
    Paget S (1889) The distribution of secondary growth in cancer of the breast. Lancet I: 571–573Google Scholar
  15. 15.
    Dearnaley DP, Sloane JP, Ormerod MG et al. (1981) Increased detection of mammary carcinoma cells in marrow smears using antisera to epithelial membrane antigen. Br J Cancer 44: 85–90PubMedCrossRefGoogle Scholar
  16. 16.
    Dearnaley DP, Sloane JP, Imrie SF et al. (1983) Detection of isolated mammary carinoma cells in marrow of patients with primary breast cancer. J R Soc Med 76: 359–364PubMedGoogle Scholar
  17. 17.
    Diel IJ, Kaufmann,M, Krempien B et al. (1990) Immunocytochemical detection of tumor cells in bone marrow in patients with primary breast cancer. Br J Cancer 62 [Suppl XII]: 3Google Scholar
  18. 18.
    Diel IJ, Kaufmann M, Goerner R et al. (1992) Detection of tumor cells in bone marrow of patients with primary breast cancer: a prognostic factor for distant metastasis. J Clin Oncol 10: 1534–1539PubMedGoogle Scholar
  19. 19.
    Redding WH, Coombes RC, Monaghan P et al. (1983) Detection of micrometastases in patients with primary breast cancer. Lancet II: 1271–1274CrossRefGoogle Scholar
  20. 20.
    Mansi JL, Berger U, Easton D et al. (1987) Micrometastases in bone marrow in patients with primary breast cancer: evaluation as an early predictor of bone metastases. Br Med J 295: 1093–1096CrossRefGoogle Scholar
  21. 21.
    Jamshidi K, Swaim FH, Raisz G (1980) A new trephine for closed bone marrow biopsy. Acta Haematol 64: 216CrossRefGoogle Scholar
  22. 22.
    Swallow DM, Gendler S, Griffith B et al. (1987) The hypervariable gene locus, which codes for the tumor associated epithelial mucins, is located on chromosome 1 region 1 q 21–24. Am Hum Genet 51: 289–294CrossRefGoogle Scholar
  23. 23.
    Gendler SJ, Taylor-Papadimitriou J, Duhig T et al. (1988) A highly immunogenic region of a human polymorphic epithelial mucin expressed by carcinomas is made up of tandem repeats. J Biol Chem 263: 12820–12823PubMedGoogle Scholar
  24. 24.
    Gendler SJ, Lancaster CA, Taylor-Papadimitriou J et al. (1990) Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin. J Biol Chem 265: 15286–15293PubMedGoogle Scholar
  25. 25.
    Bastert G, Eichler A, Kaul S (1987) Monoclonal antibodies against human breast cancer. In: Rygaard, Brünner (eds) Immunodeficient animals in biomedical research, Karger, Basel, pp 224–227Google Scholar
  26. 26.
    Kaul S, Windecker S, Bastert G (1989) TAG 12: Reinigung und Produktion von monoklonalen Zweitantikörpern. In: Kaufmann M, Jarasch ED, Bastert G (eds) Klinische Tumorimmunologie in der Gynäkologie. Zuckschwerdt, Munich, pp 34–46Google Scholar
  27. 27.
    Mayer M (1990) Biochemical and biological aspects of the plasminogen activator system. Clin Biochem 23: 197–211PubMedCrossRefGoogle Scholar
  28. 28.
    Bachmann F (1987) Thrombosis and haemostasis. In: Verstraete M, Lijnen HR, Arnout J (eds) International Society on Thrombosis and Haemostasis, Leuven University Press, Leuven, pp 227–265Google Scholar
  29. 29.
    Schmitt M, Jänicke F, Graeff H (1990) Tumour-associated fibrinolysis: the prognostic relevance of plasminogen activators uPA and tPA in human breast cancer, Blood Coagul Fibrinolysis 1: 695–702PubMedGoogle Scholar
  30. 30.
    Kramer MD, Vettel U, Schmitt M et al. (1992) Monoclonal antibodies against plasminogen activators and plasminogen. Fibrinolysis 6 [Suppl 4]: 103–111Google Scholar
  31. 31.
    Rochefort H (1992) Biological and clinical significance of cathepsin D in breast cancer. Acta Oncol 31: 125–130PubMedCrossRefGoogle Scholar
  32. 32.
    Westley BR, Rochefort H (1980) A secreted glycoprotein induced by estrogen in human breast cancer cell lines. Cell 20: 353–362PubMedCrossRefGoogle Scholar
  33. 33.
    Garcia M, Capony F, Rochefort H (1992) Cathepsin D and breast cancer metastasis: biological and clinical significance. In: Dogliotto L, Sapino A, Bussolati G (eds) Breast cancer: biological and clinical progress. Kluwer, Dordrecht, pp 243–253CrossRefGoogle Scholar
  34. 34.
    Burtis WJ, Wu T, Bunch L et al. (1987) Identification of a novel 17000 dalton parathyroid hormone-like adenylate cyclase-stimulating protein from a tumor associated with humoral hypercalcemia of malignancy. J Biol Chem 262: 7151–7156PubMedGoogle Scholar
  35. 35.
    Moseley JM, Kubota M, Diefenbach-Jagger H et al. (1987) Parathyroid hormone–related protein purified from a human lung cancer cell line. Proc Natl Acad Sci USA 84: 5048–5052PubMedCrossRefGoogle Scholar
  36. 36.
    Thiede MA, Rodan GA (1988) Expression of a calcium mobilizing parathyroid hormone-like peptide in lacting mammary tissue. Science 242: 278–280PubMedCrossRefGoogle Scholar
  37. 37.
    Nicolson GL (1988) Organ specifity of tumor metastasis: role of preferential adhesion, invasion and growth of malignant cells at specific secondary sites. Cancer Metastasis Rev 7: 143–188PubMedCrossRefGoogle Scholar
  38. 38.
    Frassica FJ, Sim FH (1988) Pathogenesis and prognosis. In: Sim FH (ed) Diagnosis and management of metastatic bone disease. Raven, New York, pp 1–6Google Scholar
  39. 39.
    Ewing J (1928) Neoplastic diseases: a treatise on tumors. Saunders, PhiladelphiaGoogle Scholar
  40. 40.
    Millar-Book W, Orr FW, Singh G (1990) In vitro effect of bone- and platelet- derived transforming growth factor beta on growth of Walker 256 carcinosarcoma cells. Clin Metastasis 8: 503–510CrossRefGoogle Scholar
  41. 41.
    Kanis JA, Gray RES, Urwin G et al. (1980) Physilogy of bone and metabolic approaches to the treatment of skeletal metastases. In: Paterson AUG, Lees AW (eds) Fundamental problems in breast cancer, Kluwer, Dordrecht, pp 303–322Google Scholar
  42. 42.
    O’Briant KCO, Shpall EJ, Houston LL et al. (1991) Elimination of clonogenic breast cancer cells from human bone marrow. Cancer, 68: 272–1278CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • I. J. Diel
  • S. D. Costa
  • M. Kaufmann
  • G. Bastert

There are no affiliations available

Personalised recommendations