Skip to main content

Carbon and Sulfur Isotope Stratigraphy of the Permian and Adjacent Intervals

  • Chapter
The Permian of Northern Pangea

Abstract

The Permian was a most unusual period in geologic history. It was marked by repeated largescale climate changes, major extinction events, abrupt and extensive volcanic activity (the Siberian traps), and an unusual degree of continental agglomeration. However, the uniqueness of Permian ocean water chemistry stands out even among all these other factors. The isotopic compositions of seawater sulfur, carbon, and strontium all reached the most extreme values developed at any time during the Phanerozoic. Perhaps even more significantly, all three elements underwent rapid shifts back to “normal” values at or near the Permo-Triassic boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adlis DS, Grossman EL, Yancey TE, McLerran RD (1988) Isotopic stratigraphy and paleodepth changes of Pennsylvanian cyclical sedimentary deposits. Palaios 5: 487–506

    Article  Google Scholar 

  • Aïssaoui DM (1985) Botryoidal aragonite and its diagenesis. Sedimentology 32: 345–361

    Article  Google Scholar 

  • Allen JR, Matthews RK (1982) Isotope signatures associated with early meteoric diagenesis. Sedimentology 29: 797–817

    Article  Google Scholar 

  • Anderson TF, Arthur MA (1983) Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems. In: Arthur MA (ed) Stable Isotopes in Sedimentary Geology. Soc Econ Paleontol Mineral Short Course 10: 1–1 to 1–151

    Google Scholar 

  • Arthur MA (1984) Carbon isotope anomalies? Nature (London) 310: 450–451

    Article  Google Scholar 

  • Ault WU, Kulp JL (1959) Isotopic geochemistry of sulphur. Geochim Cosmochim Acta 16: 201–235

    Article  Google Scholar 

  • Bassler R (1970) Hydrogeologische, chemische and Isotopen-Untersuchungen der Grubenwasser des Ibbenburener Steinkohlenreviers. Z Dtsch Geol Ges, Sonderh Hydrogeol Hydrogeoch, pp 209–267

    Google Scholar 

  • Baud A, Magaritz M, Holser WT (1989) Permian-Triassic of the Tethys: carbon isotope studies. Geol Rundsch 78: 649–677

    Article  Google Scholar 

  • Beauchamp B, Oldershaw AE, Krouse HR (1987) Upper Carboniferous to Upper Permian 13C-enriched primary carbonates in the Sverdrup Basin, Canadian Arctic: comparisons to coeval western North American ocean margins. Chern Geol 65: 391–413

    Google Scholar 

  • Bein A, Land LS (1982) San Andres carbonates in the Texas Panhandle: sedimentation and diagenesis associated with magnesium-calcium-chloride brines. Univ Texas, Bur Econ Geol Rep Invest 121: 48 pp

    Google Scholar 

  • Berger WH, Vincent E (1981) Chemostratigraphy and biostratigraphic correlation: exercises in systematic stratigraphy. Oceanol Acta 4 (SP): 115–127

    Google Scholar 

  • Berner RA (1987) Models for carbon and sulphur cycles and atmospheric oxygen: application to Paleozoic geologic history. Am J Sci 287 177–196

    Article  Google Scholar 

  • Berner RA (1989a) Biogeochemical cycles of carbon and sulfur at present and over Phanerozoic time. Global Planet Change 1: 97–122

    Article  Google Scholar 

  • Berner RA (1989b) Drying, O2, and mass extinction. Nature (London) 340: 603–604

    Article  Google Scholar 

  • Berner RA, Canfield DE, (1989) A new model for atmospheric oxygen over Phanerozoic time. Am J Sci 289: 333–361

    Article  Google Scholar 

  • Berner RA, Lasaga AC (1989) Modeling the geochemical carbon cycle. Sci Am 222: 74–82

    Article  Google Scholar 

  • Berner RA, Raiswell R (1983) Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: a new theory. Geochim Cosmochim Acta 47: 855–862

    Article  Google Scholar 

  • Boeckelmann K, Magaritz, M (1991) The Permian-Triassic of the Gartnerkofel-l core (Carnic Alps, Austria): dolomitization of the Permian-Triassic sequence. Abh Geol Bundesanst 45: 61–68

    Google Scholar 

  • Botz R, Müller G (1981) Mineralogie, Petrographie, anorganische Geochemie und Isotopen-Geochemie der Karbonatgesteine des Zechstein 2, Geol Jahrb, D 47: 3–112

    Google Scholar 

  • Brand U (1982) The oxygen and carbon isotope composition of Carboniferous fossil components: sea-water effects. Sedimentology 29: 139–147

    Article  Google Scholar 

  • Brand U (1987) Depositional analysis of the Breathitt Formation’s marine horizons, Kentucky, U.S.A.: trace elements and stable isotopes. Chern Geol (Isot Geosci Sec) 65: 117–136

    Article  Google Scholar 

  • Brand U, Veizer J (1981) Chemical diagenesis of a multicomponent carbonate system-2: Stable isotopes. J Sediment Petrol 51: 987–997

    Google Scholar 

  • Carpenter SJ (1991) Isotopic and minor element chemistry of Devonian-Carboniferous abiotic marine calcite. PhD Dissertation, Univ Michigan, Ann Arbor, 314 pp

    Google Scholar 

  • Carpenter SJ, Lohmann KC (1989) δ 18O and δ 13C variations in Late Devonian marine cements from the Golden Spike and Nevis reefs, Alberta Canada. J Sediment Petrol 59: 792–814

    Google Scholar 

  • Chen J-S, Chu X-L, Shao M-R, Zhong H (1991) Carbon isotope study of the Permian-Triassic boundary sequences in China. Chern Geol (lsot Geosci Sec) 89: 239–251

    Google Scholar 

  • Chen J-S, Shao M-R, Huo W-G, Yao Y-Y (1984) Carbon isotope of carbonate strata at Permian-Triassic boundary in Changxing, Zhejiang. Sci Geol Sin 1984: (1) 88–93. (in Chinese with English summary)

    Google Scholar 

  • Choquette PW (1968) Marine diagenesis of shallow marine lime-mud sediments: insights from δ O18 and δ C13 data. Science 161: 1130–1132

    Article  Google Scholar 

  • Choquette PW, Steinen RP (1980) Mississippian non-supratidal dolomite, Ste. Genevieve Limistone, Illinois Basin: evidence for mixed water dolomitization. In: Zenger DH, Dunham JB Ethington RL (eds) Concepts and Models of Dolomitization. Soc Econ Paleontol Mineral Spec Publ 28: 163–196

    Google Scholar 

  • Clark DN (1980) The diagenesis of Zechstein carbonate sediments. In: Fuchtbauer H, Peryt TM (eds) The Zechstein Basin with Emphasis on Carbonate Sequences (Contributions to Sedimentology 9). Schweizerbart, Stuttgart, pp 167–203

    Google Scholar 

  • Claypool GE, Holser WT, Kaplan IR, Sakai H, Zak I (1980) The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chern Geol 28: 199–260

    Article  Google Scholar 

  • Clemmensen L, Holser WT, Winter D (1984) Stable isotope study through the Permian-Triassic boundary in East Greenland. Bull Geol Soc Den 33: (3–4) 253–260

    Google Scholar 

  • Colgan RG (1990) Depositional facies, diagenesis, and isotope stratigraphy of the San Andres Formation (Lower Guadalupian), northern Algerita escarpment, New Mexico. Master’s Thesis, Southern Methodist Univ, Dallas 163 pp

    Google Scholar 

  • Composton W (1960) The carbon isotopic compositions of certain marine invertebrates and coals from the Australian Permian. Geochim Cosmochim Acta 18: 1–22

    Article  Google Scholar 

  • Coomer PG, Robinson BW (1976) Sulphur and sulphate-oxygen isotopes and the origin of the Silvermines deposit, Ireland. Mineral Depos 11: 115–169

    Article  Google Scholar 

  • Cortecci G, Reyes E, Berti G, Casati P (1981) Sulfur and oxygen isotopes in Italian marine sulfates of Permian and Triassic ages. Chern Geol 34: 65–79

    Article  Google Scholar 

  • Davies GR, Krouse HR (1975) Sulfur isotopic distribution in Paleozoic sulphate evaporites, Canadian Arctic Archipelago. Geol Surv Can Pap 75–1, p B: 221–225

    Google Scholar 

  • Degens ET, Epstein S (1964) Oxygen and carbon isotopic ratios in coexisting calcites and dolomites from recent and ancient sediments. Geochim Cosmochim Acta 28: 23–44

    Article  Google Scholar 

  • Dickson JAD, Coleman ML (1980) Changes in carbon and oxygen isotope composition during limestone diagenesis. Sedimentology 27: 107–118

    Article  Google Scholar 

  • Dickson JAD, Smalley PC, Kirkland BL (1991) Carbon and oxygen isotopes in pennsylvanian biogenic and abiogenic aragonites (Otero County, New Mexico): a laser microprobe study. Geochim Cosmochim Acta 55: 2607–2613

    Article  Google Scholar 

  • Dorman FH (1968) Some Australian oxygen isotope temperatures and a theory for a 30-million-year world-temperature cycle. J Geol 76: 297–313

    Article  Google Scholar 

  • Fisher RS, Posey HH (1990) Deposition and Diagenesis in a Marine-to-evaporite Sequence: Permian Upper Wolfcamp Formation and Lower Wichita Group, Palo Duro Basin, Texas Panhandle. Univ Texas, Bur Econ Geol Rep Invest 195: 34 pp

    Google Scholar 

  • Fisher RS, Posey HH, Kyle JR (1989) Successive pore fluid generations in a Lower Permian brine aquifer, Palo Duro Basin, Texas Panhandle, U.S.A. Appl Geochem 4: 455–464

    Article  Google Scholar 

  • Forney GG (1975) Permo-Triassic sea-level change. J Geol 83: 773–779

    Article  Google Scholar 

  • Frisia-Bruni S, Jadoul F, Weissert H (1989) Evinosponges in the Triassic Esino Limestone (Southern Alps): documentation of early lithification and late diagenetic overprint. Sedimentology 36: 685–700

    Article  Google Scholar 

  • Gaines AM (1977) Protodolomite redefined. J Sediment Petrol 47: 543–546

    Google Scholar 

  • Garrels RM, Lerman A (1984) Coupling of the sedimentary sulfur and carbon cycles: an improved model. Am J Sci 284: 986–1007

    Article  Google Scholar 

  • Given RK, Lohmann KC (1985) Derivation of the original isotopic composition of Permian marine cements. J Sediment Petrol 55: 430–439

    Google Scholar 

  • Goldstein RH (1988) Paleosols of Late Pennsylvanian cyclic strata, New Mexico. Sedimentology 35: 777–804

    Article  Google Scholar 

  • González LA, Lohmann KC (1985) Carbon and oxygen isotopiccomposition of Holocene reefal carbonates. Geology 13: 811–814

    Article  Google Scholar 

  • Goodfellow WD, Jonasson IR (1984) Ocean stagnation and ventilation defined by δ 34S secular trends in pyrite andbarite, Selwyn Basin, Yukon. Geology 12: 583–586

    Article  Google Scholar 

  • Graber ER (1989) Sedimentology, diagenesis, and secular δ13Cvariations in the upper Horquilla Limestone (Pennsylvanian/Permian) of New Mexico. PhD Dissertation, Univ Michigan, Ann Arbor, 276 pp

    Google Scholar 

  • Greig JA, Baadsgaard H, Cumming GL, Folinsbee RE, Krouse HR, Ohmoto H, Sasaki A, Smejkal V (1971) Leadand sulphur isotopes of the Irish base metal mines in Carboniferous carbonate host rocks. Soc Min Geol Jpn Spec Iss 2: 84–92

    Google Scholar 

  • Grossman EL, Zhang C, Yancey TE (1991) Stable-isotopestratigraphy of brachiopods from Pennsylvanian shales in Texas. Bull Geol Soc Am 103: 953–965

    Article  Google Scholar 

  • Gruszczynski M, Halas S, Hoffman A, Malkowski K (1989) A brachiopod calcite record of the oceanic carbon and oxygen isotope shifts at the Permian/Triassic transition. Nature (London) 337: 64–68

    Article  Google Scholar 

  • Halas S, Mioduchowski L (1978) Isotopic composition of oxygen in sulfate minerals of calcium and strontium and inwater sulfates from various regions of Poland. Ann Univ Mariae Curie-Sklodowska 33: 115–130

    Google Scholar 

  • Halley RB, Scholle PA (1985) Radiaxial fibrous calcite as earlyburial, open-system cement: isotopic evidence from Permianof Chain (Abstr). Am Assoc Petrol Geol Bull 69: 261

    Google Scholar 

  • Handford CR, Kendall AC, Prezbindowski DR, Dunham JB, Logan BW (1984) Salina-margin tepees, pisoliths, andaragonite cements, Lake MacLeod, Western Australia:their significance in interpreting ancient analogs. Geology 12: 523–527

    Article  Google Scholar 

  • Handford CR, Wiggins WD (1981) Oxygen Isotopes and paragenesis of dolomites from Permian salt-bearing sequences, Randall County core. Univ Texas, Bur Econ Geol GeolCirc 81–3: 86–89

    Google Scholar 

  • Hardie LA (1987) Dolomitization: a critical view of somecurrent views. J Sediment Petrol 57: 166–183

    Google Scholar 

  • Harland WB, Cox A V, Llewellyn PG, Pickton CAG, Smith AG, Walters R (1982) A Geologic Time Scale. Univ Press, Cambridge, 131 pp

    Google Scholar 

  • Harwood GM, Coleman ML (1983) Isotopic evidence for UK Upper Permian mineralization by bacterial reduction of evaporites. Nature (London) 301: 597–599

    Article  Google Scholar 

  • Herrmann A, Hinze C, Stein V (1967) Die halotektonische Deutung der Elfas-Uberschiebung im südniedersächsischen Bergland. Geol Lahrb 84: 407–462

    Google Scholar 

  • Holser WT (1977) Catastrophic chemical events in the history of the ocean. Nature (London) 267: 403–408

    Article  Google Scholar 

  • Holser WT (1984) Gradual and abrupt shifts in ocean chemistry during Phanerozoic time. In: Holland HD, Trendall AF (eds) Patterns of Change in Earth Evolution. Springer, Berlin Heidelberg New York, pp 123–143

    Chapter  Google Scholar 

  • Holser WT, Kaplan IR (1966) Isotope geochemistry of sedimentary sulfates. Chern Geol 1: 93–135

    Article  Google Scholar 

  • Holser WT, Magaritz M, Clark DL (1986a) Carbon-isotope stratigraphic correlations in the Late Permian. Am J Sci 286: 390–402

    Article  Google Scholar 

  • Holser WT, Magartiz M, Wright J (1986b) Chemical and isotopic variations in the world ocean during Phanerozoic time. In: Walliser OH (ed) Global Bio-events (Lecture Notes in Earth Sciences 8). Springer, Berlin Heidelberg New York, pp 63–74

    Google Scholar 

  • Holser WT, Schönlaub H-P, Attrep M Jr, Boeckelmann K, Klein P, Magaritz M, Orth CJ, Fenninger A, Jenny C, Kralik M et al. (1989) A unique geochemical record at the Permian/Triassic boundary. Nature (London) 337: 39–44

    Article  Google Scholar 

  • Hudson JD (1975) Carbon isotopes and limestone cement. Geology 3: 19–22

    Article  Google Scholar 

  • Hudson JD (1977) Stable isotopes and limestone lithification. J Geol Soc London 133: 637–660

    Article  Google Scholar 

  • Hudson JD, Coleman ML (1978) Submarine cementation of the Scheck Limestone conglomerate (1urassic, Austria): isotopic evidence. Neues Fahrb Geol Paläontol Monatsh 9: 534–544

    Google Scholar 

  • Huttel P (1989) Das Staßfurt-Karbonat (Ca2) in Slid-Oldenburg - Fazies und Diagenese eines Sediments am Nordhang der Hunte-Schwelle. Göttinger Arb Geol Paläontol, Geol Inst Univ Göttingen 39: 94 pp

    Google Scholar 

  • Irwin H, Curtis C, Coleman M (1977) Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature (London) 269: 209–213

    Article  Google Scholar 

  • Jeffery PM, Compston W, Greenhalgh D, de Laeter J (1955) On the carbon-13 abundance of limestones and coals. Geochim Cosmochim Acta 7: 255–286

    Article  Google Scholar 

  • Jinshi C, Rui Z, Weiguo H, Yuyuan Y, Shulan P, Maorong S, Chaozhen H (1981) Sulfur isotopes of some marine gypsum. Sci Geol Sin 7: 273–278

    Google Scholar 

  • Jinshi C, Maorong S, Weiguo H, Yuyuan Y (1984) Carbon isotope of carbonate strata at Permian-Triassic boundary in Changxing, Zhejiang. Sci Geol Sin 1: 88–93

    Google Scholar 

  • Jowett EC, Rye RO, Oszczepalski S (1991) Isotopic evidence for the addition of sulfur during formation of the Kupferschiefer ore deposits in Poland. Zentralbl Geol Paliiontol I-Allg Angew Reg Hist Geol 4: 1001–1015

    Google Scholar 

  • Kaplan IR (1983) Stable isotopes of sulfur, nitrogen and deuterium in recent marine environments. In: Arthur MA (ed) Stable Isotopes in Sedimentary Geology. Soc Econ Paleontol Mineral Short Course 10: 2–1 to 2–108

    Google Scholar 

  • Kaufman J (1985) Diagenesis of the Burlington-Keokuk Limestones (Miss.), eastern Missouri. Masters Thesis, State Univ New York-Stony Brook NY, 326 pp

    Google Scholar 

  • Klaus W, Pak E (1974) Neue Beiträge zur Datierung von Evaporiten des Ober-Perm. Carinthia II, Mitt Geschichtsverein Kiirnten (Klagenfurt) 164: (84) 79–85

    Google Scholar 

  • Klein P (1991) The Permian-Triassic of the Gartnerkofel-I core (Carnic Alps, Austria): geochemistry of common and trace elements I-ICP, AAS, and LECO. Abh Geol Bundesanst 45: 109–122

    Google Scholar 

  • Kralik M (1991) The Permian-Triassic of the Gartnerkofel-I core (Carnic Alps, Austria): Strontium isotopes and carbonate chemistry. Abh Geol Bundesanst 45: 169–174

    Google Scholar 

  • Kramm U, Wedepohl KH (1991) The isotopic composition of strontium and sulfur in seawater of Late Permian (Zechstein) age. Chern Geol 90: 253–262

    Article  Google Scholar 

  • Kroopnick PM, Margolis SV, Wong CS (1970) 13C variations in marine carbonate sediments as indicators of the CO2 balance between the atmosphere and oceans. J Geophys Res 75: 7668–7671

    Article  Google Scholar 

  • Kump LR (1989) Alternative modeling approaches to the geochemical cycles of carbon, sulfur, and strontium isotopes. Am J Sci 289: 390–410

    Article  Google Scholar 

  • Kump LR (1991) Interpreting carbon-isotope excursions: Strangelove oceans. Geology 19: 299–302

    Article  Google Scholar 

  • Land LS (1970) Carbonate mud: production by epibiont growth on Thalassia testudinum. J Sediment Petrol 40: 1361–1363

    Google Scholar 

  • Land LS (1980) The isotopic and trace element geochemistry of dolomite: the state of the art. In: Zenger DH, Dunham JB, Ethington RL (eds) Concepts and Models of Dolomitization. Soc Econ Paleontol Mineral Spec Publ 28: 87–110

    Google Scholar 

  • Land LS (1983) The application of stable isotopes to studies of the origin of dolomite and to problems of diagenesis of clastic sediments. In: Arthur MA (ed) Stable isotopes in Sedimentary Geology. Soc Econ Paleontol Mineral Short Course 10: 4–1 to 4–22

    Google Scholar 

  • Land LS (1985) The origin of massive dolomite. J Geol Educ 33: 112–125

    Google Scholar 

  • Lasaga AC (1989) A new approach to isotopic modeling of the variation of atmospheric oxygen through the Phanerozoic. Am J Sci 289: 411–435

    Article  Google Scholar 

  • Lasemi Z, Sandberg PA (1984) Transformation of aragonite- dominated lime muds to microcrystalline limestones. Geology 12: 420–423

    Article  Google Scholar 

  • Lazar B, Erez J (1992) Carbon geochemistry of marine-derived brines: I. 13C depletions due to intense photosynthesis. Geochim Cosmochim Acta 56: 335–345

    Article  Google Scholar 

  • Lepzelter CG, Anderson TF, Sandberg PA (1983) Stable isotopevariation in modern articulate brachiopods (Abstr). Bull Am Assoc Petrol Geol 67: 500–501

    Google Scholar 

  • Lindh TB (1983) Temporal variations in C13, S34, and global sedimentation during the Phanerozoic. Master’s Thesis, Univ Miami, 85 pp

    Google Scholar 

  • Lohmann KC (1982) “Inverted J” carbon and oxygen isotopic trends-criteria for shallow meteoric phreatic diagenesis (Abstr). Geol Soc Am Abstr Programs 14: 548

    Google Scholar 

  • Lohmann KC (1988) Geochemical patterns of meteoric diagenetic systems and their application to studies of paleokarst. In: James NP, Choquette PW (eds) Paleokarst. Springer, Berlin Heidelberg New York, pp 58–80

    Chapter  Google Scholar 

  • Lowenstam HA (1961) Mineralogy, O18/O16 ratios and strontium and magnesium contents of Recent and fossil brachiopods and their bearing on the history of the oceans. J Geol 69: 241–260

    Article  Google Scholar 

  • Magaritz M, Anderson RY, Holser WT, Saltzman ES, Garber J (1983) Isotope shifts in the Late Permian of the Delaware Basin, Texas precisely timed by varved sediments. Earth Planet Sci Lett 66: 111–124

    Article  Google Scholar 

  • Magaritz M, Bär R, Baud A, Holser WT (1988) The carbon isotope shift at the Permian-Triassic boundary in the Southern Alps is gradual. Nature (London) 331: 337–339

    Article  Google Scholar 

  • Magaritz M, Holser WT (1991) The Permian-Triassic of the Gartnerkofel-I core (Carnic Alps, Austria): carbon and oxygen isotope variation. Abh Geol Bundesanst 45: 149–164

    Google Scholar 

  • Magaritz M, Schulze KH (1980) Carbon isotope anomaly of the Permian period. In: Füchtbauer H, Peryt TM (eds) The Zechstein Basin with Emphasis on Carbonate Sequences (Contributions to Sedimentology 9). Schweizerbart, Stuttgart, pp 269–277

    Google Scholar 

  • Magaritz M, Turner P (1982) Carbon cycle changes of the Zechstein Sea: isotopic transition zone in the Marl Slate. Nature (London) 297: 389–390

    Article  Google Scholar 

  • Magaritz M, Turner P, Kading KC (1981) Carbon isotopic change at the base of the Upper Permian Zechstein sequence. Geol J 16: 243–254

    Article  Google Scholar 

  • Marshall JD (1981) Stable isotope evidence for the environment of lithification of some Tethyan limestones. Neues Fahrb Geol Paläontol Monatsh 4: 211–224

    Google Scholar 

  • Marshall JD, Ashton M (1980) Isotopic and trace element evidence for submarine lithification of hardgrounds in the Jurassic of eastern England. Sedimentology 27: 271–289

    Article  Google Scholar 

  • Matthews RK (1966) Genesis of Recent lime mud in southern British Honduras. J Sediment Petrol 36: 428–454

    Google Scholar 

  • Matthews RK (1968) Carbonate diagenesis: equilibration ofsedimentary mineralogy to the subaerial environment; Coral Cap of Barbados, West Indies. J Sediment Petrol 38: 1110–1119

    Google Scholar 

  • Mazzullo SJ (1992) Geochemical and neomorphic alteration ofdolomite: a review. Carb Evap 7: 21–37

    Article  Google Scholar 

  • Mazzullo SJ, Bischoff WD, Lobitzer H (1990) Diagenesis ofradiaxial fibrous calcites in a subunconformity, shallowburial setting: Upper Triassic and Liassic, Northern Calcareous Alps, Austria. Sedimentology 37: 407–425

    Article  Google Scholar 

  • McKenzie, JA (1981) Holocene dolomitization of calcium carbonate sediments from the coastal sabkhas of Abu Dhabi, UAE: a stable isotope study. J Geol 89: 185–198

    Article  Google Scholar 

  • Meyers WJ, James AT (1978) Stable isotopes of cherts and carbonate cements in the Lake Valley Formation (Mississippian), Sacramento Mts., New Mexico. Sedimentology 25: 105–124

    Article  Google Scholar 

  • Meyers WJ, Lohmann KC (1985) Isotope geochemistry of regionally extensive calcite cement zones and marine componentsin Mississippian limestones, New Mexico. In: Harris PM, Schneidermann N (eds) Carbonate Cements. Soc Econ Paleontol Mineral Spec Publ 36: 223–239

    Google Scholar 

  • Mirsal IA, Zankl H (1979) Petrography and geochemistry ofcarbonate void-filling cements in fossil reefs. Geol Rundsch 68: 920–951

    Article  Google Scholar 

  • Morrison JO, Brand U, Rollins HB (1985) Paleoenvironmental and chemical analysis of the Pennsylvanian Brush Creek fossil allochems, Pennsylvania, U.S.A. In: CR 10th Int Congr Carboniferous Stratigraphy and Geology (Madrid 1983) 2: 271–280

    Google Scholar 

  • Müller EP, Theilig F, Maass J, Geissler C, Dostal P (1968) Die isotope Zusammensetzung des Kohlenstoffs in Sedimenten des Perms und ihre Bedeutung fUr die Fazies. Z Angew Geol 14: 250–257

    Google Scholar 

  • Müller G, Nielsen H, Hoefs J (1966a) Schwefe1-lsotopen-Untersuchungen an Evaporiten der Kreuznacher Gruppe (Zechstein?) im Saar-Nahe-Gebiet. Neues Jahrb Geol Paläontol Monatsh 1966: 745–750

    Google Scholar 

  • Müller G, Nielsen H, Ricke W (1966b) Schwefel-IsotopenVerhältnisse in Formationswässern und Evaporiten Nord-und Süddeutschlands. Chern Geol 1: 211–220

    Article  Google Scholar 

  • Mutti ME (1990) Sedimentology and diagenesis of carbonate/siliciclastic cycles, Yates Formation, Guadalupian, New Mexico. Master’s Thesis, Univ Wisconsin-Madison, 228 pp

    Google Scholar 

  • Nielsen H (1966) Schwefelisotope im marinen Kreislauf und das δ 34S der friiheren Meere. Geol Rundsch 55: 160–172

    Article  Google Scholar 

  • Nielsen H (1979) Sulfur isotopes. In: Jaeger E, Hunziker JC (eds) Lectures in Isotope Geology. Springer, Berlin Heidelberg New York, pp 283–312

    Chapter  Google Scholar 

  • Nielsen H, Ricke, W (1964) Schwefel-Isotopen-Verhiiltnisse von Evaporiten aus Deutschland: ein Beitrag zur Kentnis von del 34S im Meerwasser-Sulfat. Geochim Cosmochim Acta 28: 577–591

    Article  Google Scholar 

  • Oberhänsli H, Hsü KJ, Piasecki S, Weissert H (1989) Permian-Triassic carbon-isotope anomaly in Greenland and the southern Alps. Hist Biol 2: 37–49

    Article  Google Scholar 

  • Osaki S (1973) Carbon and oxygen isotopic compositions of Tertiary and Permian dolomites in Japan. Geochem J 6: 163–177

    Article  Google Scholar 

  • Pak E (1974) Schwefelisotopenuntersuchungen am Institut für Radiumforschung und Kernphysik. Anz Osterr Akad Wissensch Math Naturwiss KI 1974: 1–8

    Google Scholar 

  • Pankina RG, Maksimov SP, Kalinko MK, Monakhov IB, Guriyeva SM (1975) Sulfur isotopic composition in the Phanerozoic evaporities of Bulgaria. Geokhimiya 11: 1730–1735 [translation in Geochem Int (1976) 14: 79–83

    Google Scholar 

  • Peryt TM, Magaritz M (1990) Genesis of evaporite-associated platform dolomites: case study of the Main Dolomite (Zechstein, Upper Permian), Leba elevation, northern Poland. Sedimentology 37: 745–761

    Article  Google Scholar 

  • Peryt TM, Taviani M (1986) Badania izotopowe dolomitow cechsztynskich. Przegl Geol 34: 218–219

    Google Scholar 

  • Pierre C, Ortlieb L, Person A (1984) Supratidal evaporitic dolomite at Ojo de Liebre lagoon: mineralogical and isotopic arguments for primary crystallization. J Sediment Petrol 54: 1049–1061

    Google Scholar 

  • Pigott JD (1981) Global tectonic control of secular variations in Phanerozoic sedimentary rock/ocean/atmosphere chemistry. PhD Dissertation, NW Univ, Evanston 200 pp

    Google Scholar 

  • Pilot J, Rosier HJ, Müller P (1972) Zur geochemischen Entwicklung des Meereswassers und mariner Sedimente im Phanerozoikum mittels Untersuchungen von S-, O- und C-Isotopen. N Bergbautech 2: (3) 161–168

    Google Scholar 

  • Popp BN (1986) Original oxygen isotopic compositions in Permo-Carboniferous brachiopods: implications for Upper Paleozoic ocean chemistry. PhD Dissertation, Univ Urbana 199 pp

    Google Scholar 

  • Popp BN, Anderson TF, Sandberg PA (1986) Brachiopods as indicators of original isotopic compositions in some Paleozoic limestones. Bull Geol Soc Am 97: 1262–1269

    Article  Google Scholar 

  • Posey HH, Fisher RS (1989) A sulfur and strontium isotopic investigation of Lower Permian anhydrite, Palo Duro Basin, Texas, U.S.A. Appl Geochem 4: 395–407

    Article  Google Scholar 

  • Rao CP, Green DC (1982) Oxygen and carbon isotopes of Early Permian cold-water carbonates, Tasmania, Australia. J Sediment Petrol 52: 1111–1125

    Google Scholar 

  • Rebelle M (1986) Sédimentologie, Géochimie et Palynologie du bassin évaporitique du Zechstein à partir de donnéen de sub-surface (Mer du Nord, Hesse-R.F.A.). Lab Géologie du Muséum (Paris), Doc Nature et genese des facies confines 8: 303 pp

    Google Scholar 

  • Richardson SM, Hansen KS (1991) Stable isotopes in sulfate evaporites from southeastern Iowa, U.S.A.: indications of postdepositional change. Chern Geol 90: 79–90

    Article  Google Scholar 

  • Romanek CS, Grossman EL, Morse JW (1992) Carbon isotopic fractionation in synthetic aragonite and calcite: effects of temperature and precipitation rate. Geochim Cosmochim Acta 56: 419–430

    Article  Google Scholar 

  • Rosier HJ, Pilot J, Harzer D, Kruger P (1968) Isotopengeochemische Untersuchungen (O,S,C) an Salinar- und Sapropelsedimenten Mitteleuropas. 23rd Int Geol Congr Proc 6: 89–100

    Google Scholar 

  • Ross CA, Ross JRP (1987) Late Paleozoic sea levels and depositional sequences. In: Ross CA, Haman D (eds) Timing and depositional history of eustatic sequences: constraints on seismic stratigraphy. Cushman Found Foraminifer Res Spec Publ 24: 137–149

    Google Scholar 

  • Rubinson M, Clayton RN (1969) Carbon-13 fractionation between aragonite and calcite. Geochim Cosmochim Acta 33: 997–1002

    Article  Google Scholar 

  • Rudolph KW (1978) Diagenesis of back-reef carbonates: an example from the Capitan complex. Master’s Thesis, Univ Texas, Austin, 159 pp

    Google Scholar 

  • Rush PF, Chafetz HS (1990) Fabric-retentive, non-luminescent brachiopods as indicators of original (δ13C and (δ18 O composition. J Sediment Petrol 60: 968–981

    Google Scholar 

  • Sakai H (1972) Oxygen isotopic ratios of some evaporites from Precambrian to Recent ages. Earth Planet Sci Lett 15: 201–205

    Article  Google Scholar 

  • Saller AH (1986) Radixial calcite in Lower Miocene strata, subsurface Enewetak Atoll. J Sediment Petrol 56: 743–762

    Google Scholar 

  • Sarg JF (1976) Sedimentology of the carbonate-evaporite facies transition of the Seven Rivers Formation (Guadalupian, Permian) in southeast New Mexico PhD, Dissertation Univ Wisconsin, Madison, 313 pp

    Google Scholar 

  • Sarg JF (1981) Petrology of the carbonate-evaporite facies transition of the Seven Rivers Formation (Guadalupian, Permian), Southeast New Mexico. J Sediment Petrol 51: 73–95

    Google Scholar 

  • Scherer M (1977) Preservation, alteration and multiple cementation of aragonitic skeletons from the Cassian Beds (U. Triassic, southern Alps). Neues Fahrb Geol Paliiontol Abh 154: 74–123

    Google Scholar 

  • Schidlowski M, Junge CE (1981) Coupling among the terrestrial sulfur, carbon and oxygen cycles: numerical modeling based on revised Phanerozoic carbon isotope record. Geochim Cosmochim Acta 45: 589–594

    Article  Google Scholar 

  • Scholle PA, Arthur MA (1980) Carbon isotope fluctuations in Cretaceous pelagic limestones: potential stratigraphic and petroleum exploration tool. Am Assoc Petrol Geol Bull 64:67–87

    Google Scholar 

  • Scholle PA, Stemmerik L, Harpøth O (1990) Origin of major karst-associated celestite mineralization in Karstryggen, central East Greenland. J Sediment Petrol 60: 397–410

    Google Scholar 

  • Schroll E, Pak E (1980) Schwefelisotopenzusammensetzung von Baryten aus den Ost- und Siidalpen. Tschermaks Mineral Petrogr Mitt 27: 79–91

    Article  Google Scholar 

  • Sheppard SMF, Schwarz HP (1970) Fractionation of carbon and oxygen isotopes and magnesium between metamorphic calcite and dolomite. Contrib Mineral Petrol 26: 161–198

    Article  Google Scholar 

  • Shinn EA, Steinen RP, Lidz BH, Swart PK (1989) Whitings, a sedimentologic dilemma. J Sediment Petrol 59: 147–161

    Google Scholar 

  • Solomon M, Rafter TA, Dunham KC (1971) Sulphur and oxygen isotope studies in the northern Pennines in relation to ore genesis. Trans Inst Min Metall 80: B259-B275

    Google Scholar 

  • Stattegger K (1991) The Permian-Triassic of the Gartnerkofel-1 core (Carnic Alps, Austria): statistical analysis of the geochemical data. Abh Geol Bundesanst 45: 175–192

    Google Scholar 

  • Stemmerik L, Rouse JE, Spiro B (1988) S-isotope studies of shallow water, laminated gypsum and associated evaporites, Upper Permian, East Greenland. Sediment Geol 58: 37–46

    Article  Google Scholar 

  • Stockman KW, Ginsburg RN, Shinn EA (1967) The production of lime mud by algae in south Florida. J Sediment Petrol 37: 633–648

    Google Scholar 

  • Thode HG, Monster J (1967) The sulfur isotope abundances in evaporites and in the ancient oceans. In: Vinogradov AP (ed) Chemistry of the Earth’s crust program for scientific translations, Jerusalem, Isr, pp 630–641

    Google Scholar 

  • Thonen TL (1990) Depositional facies, diagenesis, and carbon isotope stratigraphy of the San Andres Formation (Permian, Guadalupian), Algerita escarpment, southeastern New Mexico. Master’s Thesis, Southern Methodist Univ, Dallas, 178 pp

    Google Scholar 

  • Veizer J (1983) Chemical diagenesis of carbonates: theory and application of trace element technique. In: Arthur MA (ed) Stable Isotopes in Sedimentary Geology. Soc Econ Paleontol Mineral Short Course 10: 3–1 to 3–100

    Google Scholar 

  • Veizer J Fritz P, Jones B (1986) Geochemistry of brachiopods: oxygen and carbon isotopic records of Paleozoic oceans. Geochim Cosmochim Acta 50: 1679–1696

    Article  Google Scholar 

  • Veizer J, Hoefs J (1976) The nature of O18/O16 and C13/C12 secular trends in sedimentary carbonate rocks. Geochim Cosmochim Acta 40: 1387–1395

    Article  Google Scholar 

  • Veizer J, Holser WT, Wilgus CK (1980) Correlation of 13C; 12C and 34S/32S secular variations. Geochim Cosmochim Acta 44: 579–587

    Article  Google Scholar 

  • Vredenburgh LD, Cheney ES (1971) Sulfur and carbon isotopic investigation of petroleum, Wind River Basin, Wyoming. Am Assoc Petrol Geol Bull 55: 1954–1975

    Google Scholar 

  • Weber IN (1964) Carbon isotope ratios in dolostones: some implications concerning the genesis of secondary and “primary” dolostones. Geochim Cosmochim Acta 28:1257–1265

    Article  Google Scholar 

  • Wiggins WD (1986) Geochemical signatures in carbonate matrix and their relation to deposition and diagenesis, Pennsylvanian Marble Falls Limestone, central Texas. J Sediment Petrol 56: 771–783

    Google Scholar 

  • Wilgus CK (1981) A stable isotope study of Permian and Triassic marine evaporite and carbonate rocks, Western Interior, U.S.A. PhD Dissertation, Univ Oregon, Eugene, 100 pp

    Google Scholar 

  • Xu D-Y, Yan Z, Zhang Q-W, Sun Y-Y (1986) Three main mass extinctions - significant indicators of major natural divisions of geologic history in the Phanerozoic. Mod Geol 10: 365–375

    Google Scholar 

  • Zachos JC, Arthur MA (1986) Paleoceanography of the Cretaceous/Tertiary boundary event: inferences from stable isotopic and other data. Paleoceanography 1: 5–26

    Article  Google Scholar 

  • Zachos JC, Arthur MA, Deam WE (1989) Geochemical evidence for the suppression of pelagic marine productivity at the Cretaceous/Tertiary boundary. Nature (London) 337: 61–64

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scholle, P.A. (1995). Carbon and Sulfur Isotope Stratigraphy of the Permian and Adjacent Intervals. In: Scholle, P.A., Peryt, T.M., Ulmer-Scholle, D.S. (eds) The Permian of Northern Pangea. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78593-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78593-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78595-5

  • Online ISBN: 978-3-642-78593-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics