Variation in 87Sr /86Sr of Permian Seawater: An Overview

  • R. E. Denison
  • R. B. Koepnick


The strontium isotope ratio (87Sr/S6Sr) of seawater has changed significantly through time in response to variations in the input of Sr to the oceans from various crust and upper mantle sources with differing 87Sr /86Sr values. An important aspect of this temporal variation is the empirical finding that, while the 87Sr /86Sr of seawater may vary through time, at any given time the Sr isotope ratio of the oceans is everywhere the same. Isotopic uniformity is achieved because the marine residence time of Sr (~ 4 X 106 yr) is long (e.g., Veizer 1989) compared to the oceanic circulation time (~ 103 yr). The oceans, therefore, are well mixed with respect to both Sr and Sr isotope ratio, and all coeval, marine-derived, carbonates, sulfates, and phosphates will possess the same initial 87Sr/S6Sr value. Consequently, the temporal changes in the 87Sr/S6Sr of seawater can be used to correlate and date marine strata and can provide insight into the global processes that have shaped our world.


Chem Geol Strontium Isotope Marine Stratum Strontium Isotopic Composition Delaware Basin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berner RA, Rye DM (1992) Calculation of the Phanerozoic strontium isotope record of the oceans from a carbon cycle model. Am J Sci 292: 136–148CrossRefGoogle Scholar
  2. Brass GW (1976) The variation of marine 87Sr/S6Sr ratio during Phanerozoic time: interpretation using a flux model. Geochim Cosmochim Acta 40: 721–730CrossRefGoogle Scholar
  3. Brookins DG (1988) Seawater 87Sr/S6Sr for the Late Permian Delaware Basin evaporites (New Mexico, U.S.A). Chern Geol 69: 209–214CrossRefGoogle Scholar
  4. Burke WH, Hetherington EA (1984) Normalized 87Sr/S6Sr by multiple collection and comparison to a standard. Chern Geol (Isot Geosci Sec) 2: 265–268Google Scholar
  5. Burke WH, Denison RE, Hetherington EA, Koepnick RB, Nelson HF, Otto JB (1982) Variation of seawater 87Sr/S6Sr throughout Phanerozoic time. Geology 10: 516–519CrossRefGoogle Scholar
  6. Dasch EJ, Biscaye PE (1971) Isotopic composition of strontium in Cretaceous-Recent pelagic foraminifera. Earth Planet Sci Lett 11: 201–204CrossRefGoogle Scholar
  7. DePaolo DJ (1986) Detailed record of the Neogene isotopic evolution of seawater from DSDP site 590B. Geology 14: 103–106CrossRefGoogle Scholar
  8. DePaolo DJ, Ingram BL (1985) High-resolution stratigraphy with strontium isotopes. Science 227: 938–941CrossRefGoogle Scholar
  9. Dia AN, Cohen AS, O’Nions RK, Shackleton NL (1992) Seawater Sr isotope variation over the past 300 Kyr and influence of global climate cycles. Nature (London) 356: 786–788CrossRefGoogle Scholar
  10. Elderfield H (1986) Strontium isotope stratigraphy. Palaeogeogr, Palaeoclimatol, Palaeoecol 57: 71–90CrossRefGoogle Scholar
  11. Faure G, Assereto R, Tremba EL (1978) Strontium isotope composition of marine carbonates of Middle Triassic to Early Jurassic age, Lombardic Alps, Italy. Sedimentology 25: 523–543CrossRefGoogle Scholar
  12. Faure G, Hurley PM, Powell JL (1965) The isotopic composition of strontium in surface water from the North Atlantic Ocean. Geochim Cosmochim Acta 29: 209–220CrossRefGoogle Scholar
  13. Faure G, Powell JL (1972) Strontium isotope geology. Springer, Berlin Heidelberg New York, 188 ppGoogle Scholar
  14. Francois LM, Walker JCG (1992) Modelling the Phanerozoic carbon cycle and climate: constraints from the 87Sr/S6Sr isotopic ratio of seawater. Am J Sci 292: 81–135CrossRefGoogle Scholar
  15. Graffin S (1987) Ridge volume dependence on seafloor generation rate and inversion using long-term sealevel change. Am J Sci 287: 596–611CrossRefGoogle Scholar
  16. Gast PW (1955) Abundance of Sr87 during geologic time. Geol Soc Am Bull 66: 1449–1454CrossRefGoogle Scholar
  17. Goldstein SJ, Jacobsen SB (1987) The Nd and Sr isotopic systematics of riverwater dissolved material: implications for the sources of Nd and Sr in seawater. Chern Geol 66: 245–272Google Scholar
  18. Gruszczynski M, Hoffman A, Malkowski K, Veizer J (1992) Seawater strontium isotopic perturbation at the Permian- Triassic boundary, West Spitsbergen, and its implications form the interpretation of strontium isotopic data, Geology 20: 779–782CrossRefGoogle Scholar
  19. Hallam A. (1984) Pre-Quaternary sea-level changes. Annu Rev Earth Planet Sci 12: 205–243CrossRefGoogle Scholar
  20. Harland WB, Armstrong RL, Cox A V, Craig LE, Smith AG, Smith DG (1989) A Geologic Time Scale. Univ Press, Cambridge, 262 ppGoogle Scholar
  21. Harland WB, Cox A V, Llewellyn PG, Pickton CAG, Smith AG, Walters R (1982) A Geologic Time Scale. Univ Press, Cambridge, 131 ppGoogle Scholar
  22. Hedge CE, Walthall FG (1963) Radiogenic strontium-87 as an index of geological processes. Science 140: 1214–1217CrossRefGoogle Scholar
  23. Hess J, Bender ML, Jean-Guy Schilling (1986) Evolution of the ratio of strontium-87 to strontium-86 in seawater from Cretaceous to present. Science 231: 979–984CrossRefGoogle Scholar
  24. Hodell DA, Mueller PA, Garrido JR (1991) Variations in the strontium isotopic composition of seawater during the Neogene. Geology 19: 24–27CrossRefGoogle Scholar
  25. Hodell DA, Mueller PA, McKenzie JA, Mead GA (1989) Strontium isotope stratigraphy and geochemistry of the late Neogene ocean. Earth Planet Sci Lett 92: 165–178CrossRefGoogle Scholar
  26. Holser WT (1984) Gradual and abrupt shifts in ocean chemistry during Phanerozoic time. In: Holland DH, Trendall AF (eds) Patterns of Change in Earth Evolution. Springer, Berlin Heidelberg New York, pp 123–143CrossRefGoogle Scholar
  27. Koepnick RB, Denison RE, Burke WH, Hetherington EA, Nelson HF, Otto JB, Waite LE (1985) Construction of the seawater 87Sr/S6Sr curve for the Cenozoic and Cretaceous: Supporting data. Chern Geol (Isot Geosci Sec) 58: 55–81CrossRefGoogle Scholar
  28. Koepnick RB, Denison RE, Burke WH, Hetherington EA Dahl DA (1990) Construction of the Triassic and Jurassic portion of the Phanerozoic curve of seawater 87Sr/S6Sr. Chern Geol (Isot Geosci Sec) 80: 327–349CrossRefGoogle Scholar
  29. Koepnick RB, Denison RE, Dahl DA (1988) Cenozoic seawater 87Sr/S6Sr curve: data review and implications for correlation of marine strata. Paleoceanography 3: 743–757CrossRefGoogle Scholar
  30. Kramm U, Wedepohl KH (1991) The isotopic composition ofstrontium and sulfur in seawater of Late Permian (Zechstein) age. Chern Geol 90: 253–262CrossRefGoogle Scholar
  31. Kump LR (1989) Alternative modeling approaches to the geochemical cycles of carbon, sulfur, and strontium isotopes. Am J Sci 289: 390–410CrossRefGoogle Scholar
  32. Lee Roark CK (1989). Williston Basin subsidence and sea level history: chronological and lithofacies constraints. PhD Thesis, Cornell Univ, 334 ppGoogle Scholar
  33. Miller KG, Feigenson MD, Kent DV, Olsson RK (1988) Upper Eocene to Oligocene isotope (87Sr/S6Sr, 180, 13C) standard section, Deep Sea Drilling Project Site 522. Paleoceanography 3: 223–233CrossRefGoogle Scholar
  34. Miller KG, Feigenson MD, Wright JD, Clement BM (1991) Miocene standard isotope standard section, Deep Sea Drilling Project Site 608: an evaluation of isotope and biostratigraphic resolution. Paleoceanography 6: 33–52CrossRefGoogle Scholar
  35. Nishioka S, Arakawa Y, Kobayshi Y (1991) Strontium isotope profile of Carboniferous-Permian Akiyoshi Limestone in southwest Japan. Geochem J 25: 137–146CrossRefGoogle Scholar
  36. Otto JB, Blank WK, Dahl DA (1988) A nitrate precipitation technique for preparing strontium for isotopic analysis. Chern Geol (Isot Geosci Sec) 72: 173–179Google Scholar
  37. Palmer MR, Edmond JM (1989) The strontium isotope budget of the modern ocean. Earth Planet Sci lett 92: 11–26CrossRefGoogle Scholar
  38. Palmer MR, Elderfield H (1985) Sr isotope composition of sea water over the past 75 Myr. Nature (London) 314: 526–528CrossRefGoogle Scholar
  39. Peterman ZE, Hedge CE, Tourtelot HA (1970) Isotopic composition of strontium in seawater throughout Phanerozoic time. Geochim Cosmochim Acta 34: 105–120CrossRefGoogle Scholar
  40. Popp BN, Podosek FA, Brannon JC, Anderson TF, Pier J (1986) 87Sr / 86Sr ratio in Permo-Carboniferous sea waterfrom the analyses of well-preserved brachiopod shells. Geochim Cosmochim Acta 50: 1321–1328CrossRefGoogle Scholar
  41. Posey HH, Fisher RS (1989) A sulfur and strontium isotopic investigation of Lower Permian anhydrite, Palo Duro Basin, Texas, U.SA Appl Geochem 4: 395–407CrossRefGoogle Scholar
  42. Ronov AB, Khain VE, Balukhovsky AN, Seslavinsky KB, (1980) Quantitative analysis of Phanerozoic sedimentation. Sediment Geol 25: 311–325CrossRefGoogle Scholar
  43. Spooner ETC (1976) The strontium isotopic composition of sea water, and seawater-oceanic crust interaction. Earth Planet Sci Lett 31: 167–174CrossRefGoogle Scholar
  44. Vail PR, Mitchum RM, Todd RG, Widmier JM, Thompson S, Sangree JB, Bubb IN, Hatlelid WG (1977) Seismic stratigraphy and global changes in sea level. Am Assoc Petrol Geol Mem 26: 49–212Google Scholar
  45. Veizer J (1989) Strontium isotopes in seawater through time. Annu Rev Earth Planet Sci 17: 141–167CrossRefGoogle Scholar
  46. Veizer J, Compston W (1974) 87Sr/S6Sr composition of seawater during the Phanerozoic. Geochim Cosmochim Acta 38: 1461–1484CrossRefGoogle Scholar
  47. Wadleigh MA, Veizer J, Brooks C (1985) Strontium and its isotopes in Canadian rives: fluxes and global implications. Geochim Cosmochim Acta 49: 1727–1736CrossRefGoogle Scholar
  48. Wickman FW (1948) Isotope ratios; A clue to the age of certain marine sediments. J Geol 56: 61–66CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • R. E. Denison
    • 1
  • R. B. Koepnick
    • 2
  1. 1.Programs in GeosciencesThe University of Texas at DallasRichardsonUSA
  2. 2.Mobil Exploration and Production Technical CenterDallasUSA

Personalised recommendations