Image Interpretation Techniques: Exposed Structures

  • Zeev Berger


The ability to recognize and map geological structures from remote sensing data is dependent primarily on two main factors: the level of bedrock exposure of the mapped structures and their magnitude of deformation. These factors determine: (1) the type of imagery data (i.e., monoscopic versus stereoscopic) that is required for structural mapping; (2) the kind of interpretation techniques (i. e., structural versus geomorphic) that must be employed; and (3) the level of integration with other data sets that is needed to constrain the interpretation of the image data (Fig. 3.1).


Fault System Thrust Belt Jura Mountain Salt Diapir Structural Style 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Further Reading

  1. Angelier J, Colletta B (1983) Tension fractures and extensional tectonics. Nature 301: 49–51CrossRefGoogle Scholar
  2. Babcock EA (1971) Detection of active faulting using oblique infrared aerial photography in the Imperial Valley, California. Geol Soc Am Bul 82: 3189–3196CrossRefGoogle Scholar
  3. Bailey GB, Anderson FD (1982) Applications of Landsat imagery to problems of petroleum exploration in Quaidam Basin, China. AAPG Bull 66:1348–1354Google Scholar
  4. Bates RL, Jackson JA (1987) Glossary of geology, 3rd edn American Geological Institute, Alexandria, VirginiaGoogle Scholar
  5. Berger Z (1988) Detection and analysis of basement structures in low relief basins using an integrated analysis of Landsat data. AAPG Bull 72(2): 160–161Google Scholar
  6. Berger Z, Corona FV (1986) Landsat structural analysis of the Rhine Valley and the Jura Mountain area, western Europe. Int Symp on Remote sensing of the environment, 5th Thematic Conf, Reno, NV. Environmental Research Institute of Michigan, Ann Arbor, pp 35–48Google Scholar
  7. Betz D, Fuhrer F, Greiner G, Plein E (1987) Evolution of the Lower Saxony Basin. Tectonophysics (Amsterdam) 137: 127–170Google Scholar
  8. Boyer SE, Elliott D (1982) Thrust system. AAPG Bull 66(9): 1196–1230Google Scholar
  9. Corona FV, Wielchowsky CC (1984) Landsat imagery analysis of exposed structures. Exxon Production Research Company, Internal RepGoogle Scholar
  10. Diebold P, Laubscher HP, Schneider A, Tschopp R (1960) Geologic atlas of Switzerland, Sheet 1085, St. UrsanneGoogle Scholar
  11. Halbouty MT (1980) Geological significance of Landsat data for 15 giant oil and gas fields. AAPG Bull 64: 8–36Google Scholar
  12. Hamblin WK, Howard JD (1989) Exercises in physical geology, 5th edn). Macmillan, MinneapolisGoogle Scholar
  13. Harding TP (1984) Graben hydrocarbon occurrences and structural style. AAPG Bull 68: 333–362Google Scholar
  14. Harding TP, Hopkins HR (1977) Identification of structural styles with Landsat imagery. Exxon Production Research Company, Internal RepGoogle Scholar
  15. Harding TP, Lowell JD (1979) Structural styles, their platetectonic habitats, and hydrocarbon traps in petroleum provinces. AAPG Bull 63(7): 1016–1058Google Scholar
  16. Harding TP, Vierbuchen RC, Christie-Blick N (1985) Structural styles, plate-tectonic settings and hydrocarbon traps of divergent (transtensional) wrench fauls. In: Biddie KT, Christie-Blick NH (eds) Strike-slip deformation, basin formation, and sedimentation. SEPM Spec Publ 37: 51–77Google Scholar
  17. Hopkins HR, Navail H, Berger Z, Merembeck BF, Brovey RL, Schriver JS (1987) Structural analysis of the Jura Mountains-Rhine Graben intersection for petroleum exploration using SPOT stereoscopic data. In: SPOT 1 image utilization assessment, results. Centre National d’Etudes Spatiales, Toulouse, France, p 803–810Google Scholar
  18. Iilies JH (1970) Graben tectonics as related to crust-mantle interaction. In: Iilies JH, Mueller ST (eds) Graben problems. E Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp 4–27Google Scholar
  19. Iilies JH, Greiner G (1978) Rhinegraben and the Alpine system. Geol Soc Am Bull 89: 770–782CrossRefGoogle Scholar
  20. Iilies JH, Baumann H, Hoffers B (1981) Stress pattern and strain release in the Alpine foreland. Tectonophysics 71: 157–172CrossRefGoogle Scholar
  21. Jordan H (1979) Geologische Wander-Karte, Leinebergland, 1:100000, Niedersächsisches Landesamt für Bodenforschung, Hannover, GermanyGoogle Scholar
  22. Kent PE (1970) The salt plugs of the Persian Gulf region. Leicester Lit Philos Soc Trans 64: 56–88Google Scholar
  23. Kent PE (1979) The emergent Hormuz Salt plugs of southern Iran. J Pet Geol 2: 117–144CrossRefGoogle Scholar
  24. Krone A, Eisbacher GH (1988) Oblique crustal detachment in the Variscan Schwarzwald, southwestern Germany. Geol Rundsch 77(1): 25–43CrossRefGoogle Scholar
  25. Koyi H (1988) Experimental modeling of role of gravity with lateral shortening in Zagros Mountain Belt. AAPG Bull 72(11): 1381–1394Google Scholar
  26. Laubscher HP (1977) Fold development in the Jura. Tectonophysics 37: 337–362CrossRefGoogle Scholar
  27. Laubscher H, Bernoulli D (1980) Cross-section from the Rhine-Graben to the Po Plain. In: Laubscher H, Bernoulli D (eds) Geology of Switzerland, guidebook, part B. Wepf, Basel, pp 183–209Google Scholar
  28. Laubscher HP, Bernoulli D (1982) History and deformation of the Alps. In: Hsü KJ (ed) Mountain building processes, Academic Press, London, pp 169–180Google Scholar
  29. Lisenbee AL (1978) Laramide structure of the Black Hills uplift, South Dakota-Wyoming-Montana. In: Matthews V III (ed) Laramide folding associated with basement block faulting in the western United States. Geol Soc Am Mem 51: 165–196Google Scholar
  30. Longwell CR (1926) Structural studies in southern Nevada and western Arizona Geol Soc Am Bull 37: 551–584Google Scholar
  31. Love JD, Coe Christiansen A (1985) Geologic map of Wyoming. USGS, 1:500 000 scaleGoogle Scholar
  32. Lowell JD (1985) Structural styles in petroleum exploration. OGCI Publ, Tulsa, OKGoogle Scholar
  33. Miller VC (1961) Photogeology. McGraw-Hill, New YorkGoogle Scholar
  34. Miser HD (1954) Geologic map of Oklahoma. USGS, 1: 500 000 scaleGoogle Scholar
  35. Morley CK, Nelson RA, Patton TL, Munn SG (1990) Transfer zones in the east African rift system and their relevance to hydrocarbon exploration in rifts. AAPG Bull 74(8): 1234–1253Google Scholar
  36. Peltzer G, Armijo R, Tapponnier P (1987) Rate of slip on the Altin Tagh fault (North Tibet, China). In: SPOT 1 image utilization assessment, results. Centre National D’Etude Spatiales, Toulouse, France, pp 709–729Google Scholar
  37. Phelps PW, Harding TP (1987) Extensional fault blocks guidebook of Salt Flat Graben, West Texas. Exxon Production Research Company, Internal RepGoogle Scholar
  38. Spicer A (1980) Tectonic map of Switzerland. Commission Geologue Suisse, Basel, Switzerland, scale 1:500000Google Scholar
  39. Stephenson TR, VersPloeg AJ, Chamberlain L (1984) Oil and gas map of Wyoming. Wyoming Geol Surv Map Ser 12Google Scholar
  40. Thornbury WD (1969) Principles of geomorphology. John Wiley and Sons, New YorkGoogle Scholar
  41. Trümpy R (1980) An outline of the geology of Switzerland. In: The geology of Switzerland, guidebook, part 2: Wepf, Basel, p 104Google Scholar
  42. Wilcox RE, Harding TP, Seely DR (1973) Basic wrench tectonics. AAPG Bull 57(1): 74–96Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Zeev Berger
    • 1
  1. 1.Berger Enterprises Ltd.CalgaryCanada

Personalised recommendations