Recent Progress in Studies of Enzymatic Systems in Living Cells

  • Pierre M. Viallet
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 13)


Enzyme studies in test tubes have been performed for a long time, and most of our basic knowledge on enzymatic processes results from careful experiments on small amounts of ultrapurified material. Such experiments have to be conducted with great precaution to avoid any kind of injury to the sample, including denaturation or involuntary separation of the native enzyme into its different protomers.


Polycyclic Aromatic Hydrocarbon Fluorescence Spectrum Enzymatic System Recent Progress Fluorescence Lifetime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alibaud R, Salmon JM, Vigo J, Viallet P (1988) Utilisation du 1,4 Diacetoxi 2,3 dicyanobenzol (ADB) pour la détermination, par microspectrofluorimétrie, du pH intracellulaire de cellules vivantes isolées. C. R. Acad. Sci. (Paris) 307:89–92Google Scholar
  2. Allegre JM, Salmon JM, Commalonga J, Savelli M, Viallet P (1985) Microspectrofluorimétrie quantitative: automatisation d’un microspectrofluorimère équipé d’une platine motorisée permettant l’enregistrement simultané, sur différentes cellules d’une population cellulaire, de cinétiques intracellulaires. Innov. Tech. Biol. Med. 6:743–752Google Scholar
  3. Alsins J, Claesson S, Elmgen H (1982) A simple instrumentation for measuring fluorescence lifetimes of probe molecules in small systems. Chem. Scr. 20:183Google Scholar
  4. Ameloot M, Hendrickx (1982) Criteria for model evaluation in the case of deconvolution calculations. J. Chem. Phys. 76:4419CrossRefGoogle Scholar
  5. André JC, Bouchy M, Donner M (1987) On diffusion in organized assemblies and in biological membranes. Biorheology 24:237–272PubMedGoogle Scholar
  6. Anthelme B, Lautier D, Salmon JM, Vigo J, Viallet P (1990) Influence of controlled glucose deprivation on kinetics of detoxification mechanism for two intermediate metabolites, 9-hydroxyben-zo(a)pyrene and 3-hydroxybenzo(a)pyrene in 3T3 and RTG2 Cells. Poly cyclic Aromatic Compounds 1:71–79CrossRefGoogle Scholar
  7. Atherton SJ, Beaumount PC, (1984) Ethidium bromide as a fluorescent probe of the accessibility of water to the interior of DNA. Photochem. Photobiophys. 8:103Google Scholar
  8. Bancel F, Salmon JM, Vigo J, Vo-Dinh T, Viallet, P (1992a) Investigation of noncalcium interactions of Fura-2 by classical and synchronous fluorescence spectroscopy. Anal. Biochem. 204:231–238PubMedCrossRefGoogle Scholar
  9. Bancel F, Salmon JM, Vigo J, Viallet P (1992b) Microspectrofluorometry as a tool for investigation of non-calcium interactions of indo-1. Cell Calcium 13:59–68PubMedCrossRefGoogle Scholar
  10. Bancel F (1992c) Approche microspectrofluorimetrique et physicochimique des sondes fluorescentes à calcium: Application à la mesure simultanée du calcium et du pH intracellulaires sur cellules vivantes isolées. Thesis, University of Perpignan, Perpignan, FranceGoogle Scholar
  11. Basu S (1967) Ultraviolet absorption studies on DNA. Biopolymers 16:2315–2328CrossRefGoogle Scholar
  12. Benson DM, Bryan J, Plant AL, Gotto AM Jr, Smith LC (1985) Digital imaging fluorescence microscopy: spatial heterogeneity of photobleaching rate constants in individual cells. J. Cell. Biol. 100:1309–1323PubMedCrossRefGoogle Scholar
  13. Berlin RD, Fera P (1977) Changes in microviscosity associated with phagocytosis: effects of colchicine.Proc. Natl. Acad. Sci. USA 74:1072–1076PubMedCrossRefGoogle Scholar
  14. Biais J, Amirand C, Nocentini S, Ballini JP, Vigny P (1992) Photoreactions of furocoumarins in human fibroblasts: a microspectrofluorometric study. J. Cell. Pharmacol. 3:151–156Google Scholar
  15. Bottiroli G, Prenna G, Andreoni A, Sacchi CA, Svelto O (1979) Fluorescence of complexes of quinacrine mustard with DNA. Influence of the DNA base composition on the decay time in bacteria.Photochem. Photobiol. 29:23–28CrossRefGoogle Scholar
  16. Bouchy M, Donner M, André JC (1991) Erythrocyte membranes alteration in a shear stress measured by fluorescence anisotropy.Cell Biophysics 17:213–225Google Scholar
  17. Brakenoff GJ, van der Voort HTM, van Sprouseb EA, Linnemans WAM, Nanninga N (1985) Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal scanning laser microscopy. Nature (London) 317:748–749CrossRefGoogle Scholar
  18. Brochon JC, Wahl P (1972) Mesure des déclins de Fanisotropie de fluorescence de la y globulinç et de ses fragments Fab, Fc et F(ab)2 marqués avec le l-sulfonyl-5-dimethylaminonaphthalène. Eur. J. Biochem. 25:20–32PubMedCrossRefGoogle Scholar
  19. Brochon JC, Wahl P, Jallon JM, Iwatsubo M (1976) Pulse fluorimetry study of beef liver glutamate dehydrogenase-reduced nicotinamide adenine dinucleotide phosphate complexes.Biochemistry 15:3259PubMedCrossRefGoogle Scholar
  20. Chiu HC, Bersohn R (1977) Electronic energy transfer between tyrosine and tryptophan in the peptides Trp-(Pro)-Tyr. Biopolymers 16:277–288PubMedCrossRefGoogle Scholar
  21. Choi HS, Dilley R, Kim Y, Schwartz SM (1988) Proceedings of the 10th Annual International Conference of the IEEE Engineering in Medicine & Biology Society 10:261–362Google Scholar
  22. Chused TM (1989) Flow cytometric measurements of physiologic cell responses. In: Cell structure and function by microspectrofluorometry Kohen E, Hirschberg JG eds pp. 377–389, Academic Press, San DiegoGoogle Scholar
  23. Collins JM, McLean Grogan W (1989) Comparison between flow cytometry and fluorometry for the kinetic measurement of membrane fluidity parameters. Cytometry 10:44–49PubMedCrossRefGoogle Scholar
  24. Dale RE, Eisinger J (1974) Intramolecular distances determined by energy transfer. Dependance on orientional freedom of donor and acceptor. Biopolymers 13:1573CrossRefGoogle Scholar
  25. Dale RE (1978) Fluorescence depolarization and orientation factors for excitation energy transfer between isolated donor and acceptor fluorophore pairs at fixed intermolecu- lar separation. Acta. Phys. Polon A54:743–756Google Scholar
  26. Donner M, Stoltz JF (1985) Comparative study on fluorescent probes distributed in human erythrocytes and platelets. Biorheology 22:385–397PubMedGoogle Scholar
  27. Donner M, Muller S, Stoltz JF (1989) Molecular rheology of white blood cells. Rev. Port. Hemorhologia 3:235–247Google Scholar
  28. Donner M, Muller S, Stoltz JF (1990) Fluorescence depolarization method in the study of dynamic properties of blood cells. Biorheology 27:367–374PubMedGoogle Scholar
  29. Duportail G, Mauss Y, Chambron J (1977) Quantum yields and fluorescence lifetimes of acridine derivatives interactions with DNA. Biopolymers 16:1397–1404PubMedCrossRefGoogle Scholar
  30. Eisinger J, Blumberg WE, Dale RE (1981) Orientational effects in intra- and intermolecular long range excitation energy transfer. Ann. N. Y. Acad. Sci 366:155CrossRefGoogle Scholar
  31. Eyl M, Muller S, Donner M, Maugras M, Stoltz JF (1992) Use of fluorescence anisotropy determinations for indicating the physiological status of hybridoma cell cultures. Cytotechnology 8:5–11PubMedCrossRefGoogle Scholar
  32. Fairclough RH and Cantor CR (1978) The use of singlet-singlet energy transfer to study macromolecular assemblies. Methods Enzymol. 48:347–379PubMedCrossRefGoogle Scholar
  33. Finney DA, Sklar LA (1983) Ligand receptor internalization: a kinetic, flow cytometric analysis of the internalization of N-formyl peptides by human neutrophils.Cytometry 4:54–60PubMedCrossRefGoogle Scholar
  34. Forster Th (1948) Intermolecular enery transference and fluorescence.Ann Phys (Leipzig) 2:55Google Scholar
  35. Forster Th (1949) Experimental and theoretical investigation of intermolecular transfer of electron activation energy. Z Naturforsch 4a:321–7Google Scholar
  36. Gafni A, Brand L (1976) Fluorescence decay studies of reduced nicotinamide adenide dinucleotide in solution and bound to liver alcohol deshydrogenase Biochemistry 15:3165PubMedCrossRefGoogle Scholar
  37. Gratton E, Jameson DM, Hall RD (1984) Multifrequency phase and modulation fluorometry. Annu. Rev. Biophys. Bioeng. 13:105–124PubMedCrossRefGoogle Scholar
  38. Hare F, Lussan C, Sanchez E (1976) Apparatus for the direct measurement of fluorescent decay as applied to biological membranes and their various models. J. Chim. Phys- Chim, Biol. 73:621Google Scholar
  39. Hause LL, Clowry LJ, Megan PA (1988) Microscopic image analysis in cervical cytology. In: Proceedings of the 10th Annual International Conference of the IEEE Engineering in Medicine & Biology Society 10:375–376Google Scholar
  40. Inbar M, Shinitzky M (1975) Decrease in micro viscosity of lymphocyte surface membrane associated with stimulation induced by Concanavaline A. Eur. J. Immunol. 5:166–170PubMedCrossRefGoogle Scholar
  41. Inbar M, Larnicol N, Jasmin C, Mishal Z, Augery Y, Rosenfeld C, Mathe G (1977) A method for the quantitative detection of human acute lymphatic leukemia. Eur. J. Can. 13:1231–1236CrossRefGoogle Scholar
  42. Irvin JA, Quickenden TI, Sangster DF (1981) Criterion of goodness of fit for deconvolution calculations. Rev. Sci. Instrum. 52:131CrossRefGoogle Scholar
  43. Jasmin C, Augery Y, Calvo F, Iarnicol N, Rosenfeld C, Mathe G, Inbar M (1981) Cellular blood fluorescence polarization: a possible prognostic tool in human acute lymphatic leukemia. Biomedicine 34:23–28PubMedGoogle Scholar
  44. Johnson SM, Nicolau C (1977) The distribution of 1,6-diphenylhexatriene fluorescence in normal human lymphocytes. Biochem. Biophys. Res. Commun. 16:869–874CrossRefGoogle Scholar
  45. Kohen E (1964) Pyridine nucleotide compartmentalization in glass-grown ascites cells. Exp. Cell Res. 35:303–316PubMedCrossRefGoogle Scholar
  46. Kohen E, Legallais V, Kohen C (1966) Introduction to microelectrophoresis and microinjection techniques in microfluorimetry. Exp. Cell Res. 41:223–226PubMedCrossRefGoogle Scholar
  47. Kohen E, Kohen C (1974) Continuous helium-cadmium laser as an excitation source for the microspectrofluorometric assay of NAD(P)H in single living cells.Int. J. Radiat. Biol 26:97–100CrossRefGoogle Scholar
  48. Kohen E, Kohen C, Hirschberg JG, Wouters AW, Bartick PR et al. (1981a) Examination of single cells by microspectrophotometry and microfluorometry. In: Techniques in Life Sciences. Baker PF ed. pp. 103–128, Elsevier/North-Holland, New YorkGoogle Scholar
  49. Kohen E, Thorrel B, Hirschberg JG, Wouters AW, Bartick PR et al. (1981b) Microspectrofluorometric procedures and their applications in biological systems. InModern fluorescence spectroscopy, vol 3 Wehry EL ed. pp. 296–346, Plenum, New YorkGoogle Scholar
  50. Kohen E, Kohen C, Hirschberg JG, Wouters AW, Thorrel B et al. (1983) Metabolic control and compartmentation in single living cells. Cell Biochem. Funct. 1:13–16CrossRefGoogle Scholar
  51. Kohen E, Kohen C, Reyftmann JP, Morliere P, Santus R (1984) Microspectro- fluorometry of fluorescent photoproducts in photosensitized cells. Relationship to cellular quiescence and senescence in culture. Biochim. Biophys. Acta. 805:332–336PubMedCrossRefGoogle Scholar
  52. Kohen E, Welch GR, Kohen C, Hirschberg JG, Bereiter-Hahn J (1986a) Experimental analysis of spatiotemporal organization of metabolism in intact cells. The enigma of “metabolic channeling” and “metabolic compartmentation” In: The Organization of Cell Metabolism Welch GK, Clegg JS eds. pp. 251–275, NATO Adv Research Workshop, Hanstholm, Denmark, Plenum, New YorkGoogle Scholar
  53. Kohen E, Kohen C, Morliere P, Santus R, Reyftmann JP, Dubertret L et al. (1986b) A microspectrofluorometric study of the effect of anthralin, an antipsoriatic drug, on cellular structure and metabolism. Cell Biochem. Funct. 4:157–168PubMedCrossRefGoogle Scholar
  54. Kohen E, Reyftmann JP, Morliere P, Santus R, Kohen C, Mangel WF et al. (1986c) A microspectrofluorometric study of porphirin-photosensitized single living cells. Part II: Metabolic alterations.Photochem. Photobiol. 44:471–475PubMedCrossRefGoogle Scholar
  55. Kohen E, Kohen C, Hirschberg JG, Santus R, Schachtschabel DO, Nestor J (1989) Microspectrofluorometry of single living cells: Quo Vadis. In: Cell structure and function by microspectrofluorometry. Kohen E, Hirschberg JG eds. pp. 199–228, Academic Press, San DiegoGoogle Scholar
  56. Kohen E, Kohen C, Prince J, Pinon R, Hirschberg JG, Santus R et al. (1992) Microspectrofluorometry of organelle interactions in hepatocytes treated with cytotoxic agents. J. Cell Pharmacol. 3:8–21Google Scholar
  57. Kurhy JG, Fonteneau P, Duportail G, Maechling C, Laustriat G (1983) TMA-DPH: a suitable fluorescence polarization probe for specific plasma membrane fluidity studies in intact living cells. Cell Biophys. 5:129–140Google Scholar
  58. Kuhry JG, Duportail G, Bronner C, Laustriat G (1985) Plasma membrane fluidity measurement on whole living cells by fluorescence anisotropy of trimethylammoniumdiphenylhexatriene.Biochim. Biophys. Acta. 845:60–67PubMedCrossRefGoogle Scholar
  59. Kutchai H, Huxley VH, Chandler LH (1982) Determination of fluorescence polarization of membranes probes in intact erythrocytes. Biophys. J. 39:229–232PubMedCrossRefGoogle Scholar
  60. Lllenger D, Poindron P, Fonteneau P et al. (1990) The plasma membrane internalization and recycling in enhanced in macrophages upon activation with gamma-interferon and lipopolysaccharide; a study using the fluorescent probe trimethylaminodiphenylhexatriene. Biochim. Biophys. Acta. 1030:73–81CrossRefGoogle Scholar
  61. Lahmy S, Salmon JM, Viallet P (1988a) Influence of 3-Methylcholanthrene or carbaryl long term treatment on mixed function oxidase activity in 3T3 fibroblasts by single living cell investigation. Cell Biochem. Funct. 6:275–282PubMedCrossRefGoogle Scholar
  62. Lahmy S, Salmon JM, Viallet P (1988b) MFO activity changes in single 3T3 fibroblasts treated with Adriamycin. Anticancer Res. 8:1411–1418PubMedGoogle Scholar
  63. Lahmy S, Salmon JM, Vigo J, Viallet P (1989) pHi and DNA content modifications after ADR treatment in 3T3 fibroblasts. A microfluorimetric approach. Anticancer Res. 9:929–936PubMedGoogle Scholar
  64. Lakowicz (1989) Principles of frequency-domain fluorescence spectroscopy and applications to protein fluorescence. In Cell structure and function by microspectrofluorometry. Kohen E, Hirschberg JG eds. pp. 163–184, Academic Press, San DiegoGoogle Scholar
  65. Latt SA, Cheung HT, Blout ER (1965) Energy transfer. A system with relatively fixed donor-acceptor separation. J. Am. Chem. Soc. 87:995PubMedCrossRefGoogle Scholar
  66. Lautier D (1987) Application de la microspectrofluorimétrie à l’étude intracellulaire des oxydases à fonction mixte dans les cellules RTG2. Thesis, University of Montpellier 1, Montpellier, FranceGoogle Scholar
  67. Lautier D, Salmon JM, Anthelme B, Viallet P (1988) 6-Aminochrysene, a v potent inhibitor of transferase activity in single living RTG2 cells. J. Histochem. Cytochem. 36:685–691PubMedCrossRefGoogle Scholar
  68. Lautier D, Anthelme B, Salmon JM, Vigo J, Viallet P (1990) Influence of d-galactosamine on the kinetics of metabolic processes for two intermediate metabolites, 9-ydroxybenzo(a)pyrene and 3-hydroxybenzo(a)pyrene in 3T3 and RTG2 cells. J. Histochem. Cytochem. 38:949–963CrossRefGoogle Scholar
  69. Maire C, Bouchy M, Donner M, André JC (1993) Membrane labelling by fluorescent probes: incorporation of TMA-DPH in erythrocyte membranes.Biorheology (in press)Google Scholar
  70. Malie E, Griess A, Kosntner GM, Pfieffer K, Nimpf J, Hermetter A (1989) Is there any correlation between platelet aggregation, plasma lipoproteins, apoproteins and membrane fluidity of human blood platelets? Thromb. Res. 53:181CrossRefGoogle Scholar
  71. Morelle B, Salmon JM, Vigo J, Viallet P (1993) Proton, Mg2+ and protein as competing ligands for the fluorescent probe, Mag-Indo-1, a first step to the quantification of intracellular Mg2+ concentration. Photochem. Photobiol. (in press)Google Scholar
  72. Morliere P, Kohen E, Reyftmann JP, Santus R, Kohen C, Maziere JC (1987) Photosensitization by porphirins delivered to L cell fibroblasts by human serum low density lipoproteins. A microspectrofluorometric study. Photochem. Photobiol. 46:183–191PubMedCrossRefGoogle Scholar
  73. Muller CP, Volloch Z, Shinitzky M (1980) Correlation between cell density, membrane fluidity and the availability of transferring receptors in Friend erythro leukemic cells. Cell. Biophys. 2:233–240PubMedGoogle Scholar
  74. Muller S, Donner M, Drouin P, Stoltz JP (1987) Lipid fluidity of erythrocyte membrane: failure to demonstrate significant alterations in diabetes mellitus. Clinical Hemorheol. 7:619–626Google Scholar
  75. Muller S, Masson V, Droesch S, Donner M, Stoltz JF (1989) Application to the evaluation of opsonozing properties of fibronectin. Biorheology 26:323–330PubMedGoogle Scholar
  76. Murphy RF, Jorgensen ED, Cantor CR (1982a) Kinetics of histone endocytosis in Chinese hamster ovary cells. A flow cytometric analysis. J. Biol. Chem. 257: 1695–1701PubMedGoogle Scholar
  77. Murphy RF, Powers S, Verderame M, Cantor CR, Pollack R (1982b) Flow cytometric analysis of insulin binding and internalization by Swiss 3T3cells. Cytometry 2:402–406PubMedCrossRefGoogle Scholar
  78. Murphy RF, Powers S, Cantor CR (1984) Endosome pH measured in single cells by dual fluorescence flow cytometry: rapid acidification of insulin to pH 6. J. Cell. Biol 98:1757–1762PubMedCrossRefGoogle Scholar
  79. Murphy RF, Roederer M (1986) In Application of fluorescence in the biomedical sciences Taylor DL, Waggonner AS, Murphy RF, Lanni F, Birge R eds. pp. 545–566, Alan R Liss, New YorkGoogle Scholar
  80. Murphy RF (1989) Flow cytometric analysis of ligand binding and endocytosis. In Cell structure and function by microspectrofluorometry Kohen E, Hirschberg JG eds. pp. 363–376, Academic Press, San DiegoGoogle Scholar
  81. Plant AL, Benson DM, Smith LC (1985) Cellular uptake and intracellular localization of benzo(a)pyrene by digital fluorescence imaging microscopy. J. Cell Biol 100: 1295–1308PubMedCrossRefGoogle Scholar
  82. Prendergast FG, Haugland RP, Callahan PJ (1981) l-4-(Trimethylamino)-phenyl-6- phenylhexa-l,3,5-triene: Sunthesis, fluorescence properties and use as a fluorescence probe of lipid bilayers.Biochemistry 20:7333–7338PubMedCrossRefGoogle Scholar
  83. Prenna G, Bottiroli G, Mazzini G (1977) Cytofluorimetric quantification of the activity and reaction kinetics of acid phosphatase. Histochem. J. 9:15–30PubMedCrossRefGoogle Scholar
  84. Reyftmann JP, Kohen E, Morliere P, Santus R, Kohen C, Mangel WF et al. (1986) A microspectrofluorometric study of porphyirin-photosensitized single living cells. 1. Membrane alterations. Photochem. Photobiol. 44:461–469PubMedCrossRefGoogle Scholar
  85. Salmon JM, Viallet P (1977) Use of electronic spectra in the study of enzymes-pyridine nucleotides interactions. J. Chim. Phys., Phys-Chim., Biol 74:239–245Google Scholar
  86. Salmon JM (1980) Réalisation d’un microspectrofluorimètre. Application à l’étude de quelques mécanismes cellulaires. Thesis, University of Perpignan, Perpignan, FranceGoogle Scholar
  87. Salmon JM, Kohen E, Viallet P, Hirschberg JG, Wouters AW, Kohen C, Thoreil B (1982) Microspectrofluorometric approach of the study of the free/bound NAD(P)H ratio as metabolic indicator in various cell types. Photochem. Photobiol 36:525CrossRefGoogle Scholar
  88. Salmon JM, Vigo J, Viallet P (1988) Resolution of complex fluorescence spectra recorded on single unpigmented living cells using a computerized method. Cytometry 9:25–32PubMedCrossRefGoogle Scholar
  89. Santus R, Morliere P, E Kohen (1991) The photobiology of the living cell as studied by microspectrofluometric techniques. Photochem. Photobiol 54:1071–1077PubMedCrossRefGoogle Scholar
  90. Scott TG, Spencer RP, Leonard J, Weber G (1970) Emission properties of NADH. Studies of fluorescence lifetimes and quantum efficiencies of NADH, AcPyADH and simplified synthetic models. J. Am. Chem. Soc. 92:687CrossRefGoogle Scholar
  91. Schipper J, Tilders FJH, Ploem JS (1979) Extraneuronal catecholamine as an index for sympathetic activity: a scanning microfluorimetry study in the iris of the rat. J. Pharmacol Exp. Ther. 211:265–270PubMedGoogle Scholar
  92. Sipe DM, Murphy RF (1987) High-resolution kinetics of transferrin acidification in BALB/c 3T3 cells: exposure to pH 6 followed by temperature sensitive alkalinization during recycling. Proc. Natl. Acad. Sci. USA 84:7119–7123PubMedCrossRefGoogle Scholar
  93. Steinberg IZ (1978) Circular polarization of luminescence: biochemical and biophysical applications. Annu. Rev. Biophys. Bioeng. 7:113–137PubMedCrossRefGoogle Scholar
  94. Stoltz JF, Donner M (1985a) Relations between molecular rheology and red blood cell structure: methods and clinical approaches. Clinical Hemorheol. 5:813–848Google Scholar
  95. Stoltz JF, Donner M (1985b) Fluorescence polarization applied to cellular microrheology. Biorheology 22:227–247PubMedGoogle Scholar
  96. Stryer L, Haugland RP (1967) Energy transfer: a spectroscopic rules. Proc. Natl. Acad. Sci. USA 58:719PubMedCrossRefGoogle Scholar
  97. Teale FJW (1984) Phase and modulation fluorimetry. In Time resolved fluorescence spectroscopy Cundall RB, Dale RE eds. pp. 59–79, Plenum Press, New YorkGoogle Scholar
  98. Thaer A A, Sernetz M (eds) (1973) Fluorescence techniques in cell biology. Springer, Berlin Heidelberg New YorkGoogle Scholar
  99. Tsunoda Y, Yodozawa S, Tashiro Y (1988) Fluorescence digital image analysis of the inosital triphospate-mediated calcium transient in single permeabilized parietal cells. FEBS Lett. 231:29–35PubMedCrossRefGoogle Scholar
  100. Udenfriend S, Zaltzman-Nirenberg P, Guroff G (1966) A study of cellular transport with the fluorescent amino acid aminonaphthylamine. Arch. Biochem. Biophys. 116:261–270PubMedCrossRefGoogle Scholar
  101. Valeur B, Moirez J (1973) Analyse des courbes de décroissance multiexponentielles par la méthode des fonctions modulatrices. Application à la fluorescence. J. Chim. Phys. 70:500–506Google Scholar
  102. Valeur B (1978) Analysis of time-dependant fluorescence experiments by the method of modulating functions with special attention to pulse fluorometry.Chem. Phys. 3:85–93CrossRefGoogle Scholar
  103. Valeur B (1993) Fluorescence probes for evaluation of local physical and structural parameters. In Molecular luminescence spectroscopy. Methods and Applications: Part 3 Schulman SG ed. Wiley-Interscience, New YorkGoogle Scholar
  104. Vigo J, Salmon JM, Viallet P (1987) Quantitative microfluorometry of isolated living cells with pulsed excitation: development of an effective and relatively inexpensive instrument. Rev. Sci. Instrum. 58:1433–1438CrossRefGoogle Scholar
  105. Vigo J, Salmon JM, Lahmy S, Viallet P (1991) Fluorescent image cytometry: from qualitative to quantitative measurements. Anal. Cell. Pathol. 3:145–165PubMedGoogle Scholar
  106. Wahl P (1965) Sur l’étude des solutions de macromolécule par la décroissance de fluorescence polarisée. C. R. Acad. Sci. (Paris) 260:6891–6893Google Scholar
  107. Ware WR (1971) Transient luminescence measurements. In Creation and detection of the excited state, vol 1 part A Lamola AE (ed) Marcel Dekker, New York, pp 213–302Google Scholar
  108. Ware WR (1983) Transient luminescence measurements. In Time resolved fluorescence spectroscopy, Cundall RB, Dale RE eds. pp. 23–58, Plenum Press, New YorkGoogle Scholar
  109. Weber G (1952) polarization of the fluorescence of macomolecules. 1. Theory and experimental method. Biochem. J. 51:145–155PubMedGoogle Scholar
  110. Weber G (1953) Rotational brownian motion and polarization of the fluorescence of solutions. In: Adv. Protein. Chem. 8:415–459PubMedCrossRefGoogle Scholar
  111. Weber G (1984) Old and new developments in fluorescence spectroscopy. In Time resolved fluorescence spectroscopy Cundall RB, Dale RE eds. pp. 1–20, Plenum Press, New YorkGoogle Scholar
  112. Weber G (1989) From solution spectroscopy to image spectroscopy. In Cell structure and function by microspectrofluorometry Kohen E, Hirschberg JG eds. pp. 71–85, Academic Press, San DiegoGoogle Scholar
  113. White JG, Amos WB (1987a) Confocal microscopy comes of age. Nature (London) 328:183–184CrossRefGoogle Scholar
  114. White JG, Amos WB, Fordham M (1987b) An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy. J. Cell. Biol. 105:41–48PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Pierre M. Viallet
    • 1
  1. 1.Laboratory of physical ChemistryUniversity of PerpignanPerpignan CedexFrance

Personalised recommendations