Mode Coupling Approach to the Glass Transition

  • R. Schilling

Abstract

The transformation of a supercooled liquid into a solid-like glassy phase plays a special role in the field of condensed matter physics. There are some experimental observations which might allow one to relate this glass transition to an underlying equilibrium phase transition [1]:

(S1) the heat capacity c p (T), the derivative ∂V/∂T|p of the volume V at constant pressure etc. exhibit a more or less well pronounced “discontinuity” at a temperature T g, called calorimetric glass transition temperature

(S2) for many glass forming systems the shear viscosity η tends to diverge like
$$\eta (T) = \eta _0 \exp \left[ { - \frac{B}{{k_B (T - T_0 )}}} \right],\,B > 0\,,$$
(6.1)
where T 0 is the Vogel-Fulcher temperature

(S3) the extrapolation of the excess entropy ΔS of the supercooled liquid relative to the crystal yields the Kauzmann-Temperature T K, where ΔS(T) becomes zero. Below T K the entropy of the supercooled state is less than that of the crystal. Hence the system must crystallize or go to a glass phase.

Keywords

Entropy Toluene Pyridine Macromolecule Stein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jäckie J (1986) Rep Prog Phys 49:171Google Scholar
  2. 2.
    Turnbull D, Cohen MH (1958) J Chem Phys 29:1049;Google Scholar
  3. Grest GS, Cohen MH (1981) Adv Chem Phys 48:455Google Scholar
  4. 3.
    Gibbs JH, Di Marzio EA (1958) J. Chem Phys 28:373;Google Scholar
  5. Di Marzio EA, Gibbs JH (1981) Ann NY Acad Sci 371:1Google Scholar
  6. Stein DL, Palmer RG (1988); Phys Rev B38:12035:Google Scholar
  7. Kirkpatrick TR, Thirumalai D, Wolynes PG (1989) Phys Rev A40:1045;Google Scholar
  8. Souletie J (1990) J Phys (France) 51:883;Google Scholar
  9. Sethna JP, Shore JD, Huang M (1991) Phys Rev B44:4943Google Scholar
  10. 5.
    Mezei F (1991) J Non-Cryst Solids 131–133:317Google Scholar
  11. 6.
    Knaak W, Mezei F, Farago B (1988) Europhys Lett 7:529Google Scholar
  12. 7.
    Johari GP, Goldstein M (1970) J Chem Phys 53:2372; (1971), ibid. 55:4245Google Scholar
  13. 8.
    Johari GP (1973) J Chem Phys 58:1766Google Scholar
  14. 9.
    Angell CA (1985) J Noncryst Solids 73:1Google Scholar
  15. 10.
    Taborek P, Kleiman RN, Bishop DJ (1986) Phys Rev B34:1835;Google Scholar
  16. Frick B, Farago B, Richter D (1990) Phys Rev Lett 64:2921Google Scholar
  17. 11.
    Götze W (1991) In: Hansen JP, Levesque D, Zinn-Justin J (eds) Liquids, freezing and the glass transition North Holland, AmsterdamGoogle Scholar
  18. 12.
    Götze W, Sjögren L (1992) Rep Prog Phys 55:241Google Scholar
  19. 13.
    Götze W (1978) Solid State Comm 27:1393;Google Scholar
  20. Götze W (1979) J Phys C12:1279Google Scholar
  21. 14.
    Götze W (1981) Phil Mag B43:219Google Scholar
  22. 15.
    Geszti T (1983) J Phys 62:5805;Google Scholar
  23. Geszti T (1987) Acta Physica Hungarica 62:267Google Scholar
  24. 16.
    Bengtzelius U, Götze W, Sjölander A (1984) J Phys C17:5915Google Scholar
  25. 17.
    Leutheusser E (1984) Phys Rev A29:2765Google Scholar
  26. 18.
    Binder K, Young AP (1986) Rev Mod Phys 58:801Google Scholar
  27. 19.
    Götze W (1984) Z Phys B56:139Google Scholar
  28. 20.
    Götze W (1985) Z Phys B60:195Google Scholar
  29. 21.
    Kirkpatrick TR (1985) Phys Rev A31:939Google Scholar
  30. 22.
    Das SP, Mazenko GF, Ramaswamy S, Toner JJ (1985) Phys Rev Lett 54:118Google Scholar
  31. 23.
    Das SP, Mazenko GF (1986) Phys Rev A34:2265Google Scholar
  32. 24.
    Götze W, Sjögren L (1987) Z Phys B65:415Google Scholar
  33. 25.
    Bruce AD, Cowley RA (1981) Structural phase transitions. Taylor and Francis, LondonGoogle Scholar
  34. 26.
    Arnold VI, Avez A (1968) Ergodic problems in classical mechanics. Benjamin, New YorkGoogle Scholar
  35. 27.
    Aksenov VL, Bobeth M, Plakida NM, Schreiber J (1987) J Phys C20:375Google Scholar
  36. 28.
    Fredrickson GH, Andersen HC (1984) Phys Rev Lett 58:2091;Google Scholar
  37. Fredrickson GH, Andersen HC (1985) J Chem Phys 83:5882Google Scholar
  38. 29.
    Fredrickson GH, Brawer SA (1986) J Chem Phys 84:3351Google Scholar
  39. 30.
    Leutheusser E, De Raedt H (1986) Solid State Comm 57:457Google Scholar
  40. 31.
    Rostiashvili VG (1988) Physica A148:208;Google Scholar
  41. Rostiashvili VG (1990) Sov Phys JETP 70:563Google Scholar
  42. 32.
    Schweizer KS (1989) J Chem Phys 91:5802, 5822Google Scholar
  43. 33.
    Höchli UT, Knorr K, Loidl A (1990) Adv Phys 39:405Google Scholar
  44. 34.
    Götze W, Sjögren L (1984) J Phys C17:5759Google Scholar
  45. 35.
    Michel KH (1987) Z Phys 68:259;Google Scholar
  46. Bostoen C, Michel KH (1988) Z Phys 71:369;Google Scholar
  47. Bostoen C, Michel KH (1991) Phys Rev B43:4415Google Scholar
  48. 36.
    Kirkpatrick TR, Thirumalai D (1988) Phys Rev B37:5342; A37:4439; B38:4881Google Scholar
  49. 37.
    Kirkpatrick TR, Thirumalai D (1987) Phys Rev Lett 58:2091; Phys Rev B36:5388Google Scholar
  50. 38.
    Aksenov VL, Bobeth M, Plakida NM, Schreiber J (1987) Z Phys B69:393Google Scholar
  51. 39.
    Prigodin VN (1992) J Phys Condens Matter 4:785Google Scholar
  52. 40.
    Kawasaki K (1976) In: Phase transitions and critical phenomena, Domb C, Green MS (eds) (Academic, London)Google Scholar
  53. 41.
    Forster D (1975) Hydrodynamic fluctuations, broken symmetry and correlation functions, Benjamin, Reading; Hansen JP, McDonald IR (1986) Theory of simple liquids 2nd edn. Academic, LondonGoogle Scholar
  54. 42.
    Green MS (1952) J Chem Phys 20:1281; (1954) 22:398Google Scholar
  55. 43.
    Mori H (1965) Prog Theor Phys 33:423Google Scholar
  56. 44.
    Zwanzig R (1961) Phys Rev 124:983Google Scholar
  57. 45.
    Mori H, Fujisaka H (1973) Prog Theor Phys 49:764Google Scholar
  58. 46.
    Hess W, Klein R (1983) Adv Phys 32:173Google Scholar
  59. 47.
    Cichocki B, Hess W (1987) Physica 141A:475Google Scholar
  60. 48.
    Löwen H, Hansen J.-P, Roux J.-N. (1991) Phys Rev A44:1169; 8215Google Scholar
  61. 49.
    Belitz D, Schirmacher W (1984) J Noncryst Solids 61:1073Google Scholar
  62. 50.
    Götze W, Sjögren L (1988) J Phys C21:3407Google Scholar
  63. 51.
    Sjögren L (1990) Z Phys B79:5Google Scholar
  64. 52.
    Fuchs M, Götze W, Hillebrand S, Latz A (1992) J Phys: Condens Matter 4:7709Google Scholar
  65. 53.
    Kob W, Schilling R (1991) J Phys. Condens Matter 3:9195Google Scholar
  66. 54.
    Flach S, Götze W, Sjögren L (1992) Z Phys B87:29Google Scholar
  67. 55.
    Frick B, Farago B, Richter D (1990) Phys Rev Lett 64:2921Google Scholar
  68. 56.
    Gruver JT, Kraus G (1964) J Polym Sci A2:797Google Scholar
  69. 57.
    Mezei F, Knaak W, Farago B (1987) Phys Scri T19:363Google Scholar
  70. 58.
    Fuchs M, Götze W, Latz A (1990) Chem Phys 149:185Google Scholar
  71. 59.
    Weiler R, Bose R, Macedo PB (1970) J Chem Phys 53:1258Google Scholar
  72. 60.
    Sjörgen L (1986) Phys Rev A33:1254Google Scholar
  73. 61.
    Bartsch E, Kiebel M, Fujara F, Sillescu H, Petry W (1989) In: Richter D et al. (eds) Dynamics of disordered materials, Springer p. 135Google Scholar
  74. 62.
    Cuckierman M, Lane JW, Uhlmann DR. (1973) J Chem Phys 59:3639Google Scholar
  75. 63.
    Wahnström G (1991) Phys Rev A44:3752Google Scholar
  76. 64.
    Onodera Y (1970) Prog Theor Phys 44:1477Google Scholar
  77. 65.
    Flach S (1991) Z Phys B82:419;Google Scholar
  78. Flach S, Olbrich E (1991) Phys Z B85:99Google Scholar
  79. 66.
    Kob W, Schilling R (1990) Phys Rev A42:2191Google Scholar
  80. 67.
    Wochner P, Burkel E, Peisl J, Eckold G (1992) Europhys Lett 17:703Google Scholar
  81. 68.
    Götze W (1990) J Phys Condens Matter 2:8485Google Scholar
  82. 69.
    Li G, Du WM, Chen XK, Cummins HZ (1992) Phys Rev A45:3867Google Scholar
  83. 70.
    Götze W, Sjören L (1988) J Phys C21:3407Google Scholar
  84. 71.
    Mezei F (1991) Ber Bunsenges Phys Chemie 95:1118Google Scholar
  85. 72.
    Li G, Du WM, Sakai A, Cummins HZ (1992) Phys Rev A46:3343Google Scholar
  86. 73.
    Fujara F, Petry W (1987) Europhys Lett 4:921Google Scholar
  87. Pusey PN, van Megen W (1987) Phys Rev Lett 59:2083; (1989) Physica A157:705; (1991)Google Scholar
  88. van Megen W, Pusey PN, (1991) Phys Rev A43:5429; Phy Rev Lett 67:1586Google Scholar
  89. 75.
    Sjögren L (1991) In Colmenero J Alegria A (eds) Basic features of the glassy state (Singapore: World Scientific, 1990); J Phys Condens Matter 3:5023Google Scholar
  90. 76.
    Ishida Y, Matsuo M, Yamafuji K, (1962) Koll ZZ Polym 180:108Google Scholar
  91. 77.
    Götze W (1990) Vth International symposium on selected topics in statistical mechanics. World Scientific, SingaporeGoogle Scholar
  92. 78.
    Signorini GF, Barrat J.-L., Klein ML (1990) J Chem Phys 92:1294Google Scholar
  93. 79.
    Halalay IC, Nelson KA (1992) Phys Rev Lett 69:636Google Scholar
  94. 80.
    Moynihan CT, Bressel RD, Angell CA (1971) J Chem Phys 55:4414Google Scholar
  95. 81.
    Fuchs M, Götze W, Hofacker I, Latz A (1991) J Phys Condens Matter 3:5047Google Scholar
  96. 82.
    Howell FS, Bose RA, Macedo PB, Moynihan CT (1974) J Phys Chem 78:639Google Scholar
  97. 83.
    Mezei F, Murani AP (1979) J Mag Mag Mat 14:211Google Scholar
  98. 84.
    Götze W, Haussmann R (1988) Z Phys 72:403;Google Scholar
  99. Götze W, Sjögren L (1989) J Phys: Condens. Matter 1:4203Google Scholar
  100. 85.
    Jäckle J (1989) J Phys Condens Matter 1:267Google Scholar
  101. 86.
    Ehlich D, Sillescu H (1990) Macromolecules 23:1600Google Scholar
  102. Lohfink M, Sillescu H (1992) In: Kawasaki K, Tokuyama M, Kawakatsu T (eds) AIP Conf Proceed 256 Slow dynamics in condensed matterGoogle Scholar
  103. 87.
    Rössler E (1990) Phys Rev Lett 65:1595Google Scholar
  104. 88.
    Richter D, Zorn R, Farago B, Frick B, Fetters LJ (1992) Phys Rev Lett 68:71Google Scholar
  105. 89.
    Bengtzelius U (1986) Phys Rev A33:3433; (1986) A34:5059;Google Scholar
  106. Götze W, Sjögren L (1991) Phys Rev A43:5442Google Scholar
  107. 90.
    Fuchs M, Hofacker I, Latz A (1992) Phys Rev A45:898Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • R. Schilling

There are no affiliations available

Personalised recommendations