Skip to main content

Dynamics of Rotational Motion in Liquid Crystalline Systems

  • Chapter
  • 278 Accesses

Abstract

Liquid crystals combine the anisotropic optical properties, as they are typical for birefringent crystals, with the viscous behaviour of liquids [1, 2]. Application of these materials is based on this specific pattern of properties. Well known, and of great technological importance is the use of nematic liquid crystals in modern displays. Here electrical fields are applied to induce local changes in the orientation of the optic axis. Switching times should be as short as possible and usually are in the order of 10–100 ms. The decisive parameter is the rotational viscosity γ, which describes the ratio between the torque acting on the director (i.e. the optic axis) and its angular velocity. For displays low values of γl are desirable. In a different range of applications nematogenic materials are used to prepare optical components with specific permanent birefringence profiles. Principally this can be achieved by setting up in the nematic phase a specific director field and then fixing it by a quench into the glassy state. This procedure is now gaining special importance in attempts to produce components with nonlinear optical properties. Liquid crystalline polymers, composed of mesogenic groups which are laterally attached to a flexible backbone chain, constitute a class of materials which is convenient for this purpose [3, 4]. These “LC-side group polymers” usually show a glass transition at temperatures above room temperature, so that optical structures prepared in the nematic phase can be fixed by a quenching and then remain stable at ambient temperature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. De Gennes PG (1974) The physics of liquid crystals. Clarendon, Oxford

    Google Scholar 

  2. Vertogen G, de Jeu WH (1988) Thermotropic liquid crystals, fundamentals. Springer, Berlin Heidelberg New York

    Google Scholar 

  3. Finkelmann H, Ringsdorf H, Wendorff H (1978) Makromol Chem 179:273

    CAS  Google Scholar 

  4. Donald AM, Windle AH (1992) Liquid crystalline polymers. Cambridge University Press, Cambridge

    Google Scholar 

  5. Doi M, Edwards SF (1986) The theory of polymer dynamics. Clarendon, Oxford

    Google Scholar 

  6. Marrucci G (1982) Mol Cryst Liq Cryst 72:153

    Article  CAS  Google Scholar 

  7. Tseber AO (1978) Magn Gidrod 3:3

    Google Scholar 

  8. McArdle CB (1989) Side chain liquid crystal polymers. Blackie, London

    Google Scholar 

  9. Finkelmann H (1991) In: Ciferri A (ed) Liquid crystallinity in polymers: principles and fundamental properties, VCH Publishers, Weinheim, p 315

    Google Scholar 

  10. Brochard F (1979) J Polym Sci Polym Phys Ed 17:1367

    Article  CAS  Google Scholar 

  11. Kirste R, Ohm H (1985) Makromol Chem, Rapid Commun. 6:179

    Article  Google Scholar 

  12. Hardouin F, Leroux N, Mery S, Noirez L (1992) J Phys II France 2:271

    Article  CAS  Google Scholar 

  13. Mattoussi H, Ober R, Veyssie M, Finkelmann H (1986) Europhys Lett 2:233

    Article  CAS  Google Scholar 

  14. Martin AJ, Meier G, Saupe A (1971) Symp Faraday Soc 5:119

    Article  Google Scholar 

  15. Seiberle H, Stille W, Strobl G (1990) Macromolecules 23:2008

    Article  CAS  Google Scholar 

  16. Götz S, Stille W, Strobl G (1993) Macromolecules 26:1520

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stille, W., Strobl, G.R. (1994). Dynamics of Rotational Motion in Liquid Crystalline Systems. In: Richert, R., Blumen, A. (eds) Disorder Effects on Relaxational Processes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78576-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78576-4_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78578-8

  • Online ISBN: 978-3-642-78576-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics