Skip to main content

Stochastic Interpretation of Inhomogeneous Spectroscopic Line Shapes

  • Chapter
Disorder Effects on Relaxational Processes
  • 277 Accesses

Abstract

Inhomogeneous distributions of transition frequencies are a ubiquitous appearance in many fields of spectroscopy [1–3]. This phenomenon means that an ensemble of identical particles within a sample in general do not have equal energy differences between the same pair of quantum states. The reason for these variations are inhomogeneities and fluctuations in the microscopic structure of the sample which lead to different local environment of the absorbing particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

FWHM:

full width at half-maximum

TLS:

two-level system (low-energy excitation of the amorphous solid state)

Reference

  1. Portis AM (1953) Phys Rev 91:1071

    Article  CAS  Google Scholar 

  2. Stoneham AM (1969) Rev Mod Phys 41:82

    Article  Google Scholar 

  3. Laird BB, Skinner JL (1989) J Chem Phys 90:3880

    Article  CAS  Google Scholar 

  4. Kurnit NA, Abella ID, Hartmann SR (1964) Phys Rev Lett 13:567

    Article  CAS  Google Scholar 

  5. Hesselink WH, Wiersma DA (1979) Phys Rev Lett 43:1991

    Article  CAS  Google Scholar 

  6. Szabo A (1971) Phys Rev Lett 27:323

    Article  CAS  Google Scholar 

  7. Gorokhovskii AA, Kaarli RK, Rebane LA (1974) JETP Lett 20:216 (ZhETF Pis Red 20:474)

    Google Scholar 

  8. Kharlamov BM, Personov RI, Bykovskaya LA (1974) Opt Commun 12:191

    Article  CAS  Google Scholar 

  9. Klauder JR, Anderson PW (1962) Phys Rev 125:912

    Article  CAS  Google Scholar 

  10. Black JL, Halperin BI (1977) Phys Rev B 16:2879

    Article  CAS  Google Scholar 

  11. Reinecke TL (1979) Solid State Commun 32:1103

    Article  CAS  Google Scholar 

  12. Sesselmann T, Richter W, Haarer D, Morawitz H (1987) Phys Rev B 36:7601

    Article  CAS  Google Scholar 

  13. Reul S, Richter W, Haarer D (1991) Chem Phys Lett 180:1

    Article  CAS  Google Scholar 

  14. Meixner AJ, Renn A, Bucher SE, Wild UP (1986) J Phys Chem 90:6777

    Article  CAS  Google Scholar 

  15. Kador L, Haarer D, Personov RI (1987) J Chem Phys 86:5300

    Article  CAS  Google Scholar 

  16. Gerblinger J, Bogner U, Maier M (1987) Chem Phys Lett 141:31

    Article  CAS  Google Scholar 

  17. Kador L, Jahn S, Haarer D, Silbey R (1990) Phys Rev B 41:12215

    Article  CAS  Google Scholar 

  18. Laird BB, Skinner JL (1989) J Chem Phys 90:3274

    Article  CAS  Google Scholar 

  19. Markoff AA (1912) Wahrscheinlichkeitsrechnung. Teubner, Leipzig

    Google Scholar 

  20. Kador L (1991) J Chem Phys 95:5574

    Article  CAS  Google Scholar 

  21. Kikas J, Rätsep M (1982) Phys Status Solidi B 112:409

    Article  CAS  Google Scholar 

  22. Hartmannsgruber N, Maier M (1992) J Chem Phys 96:7279

    Article  CAS  Google Scholar 

  23. Anderson PW, Halperin BI, Varma CM (1972) Phil Mag 25:1

    Article  CAS  Google Scholar 

  24. Phillips WA (1972) J Low Temp Phys 7:351

    Article  CAS  Google Scholar 

  25. Messing I, Raz B, Jortner J (1977) J Chem Phys 66:2239

    Article  CAS  Google Scholar 

  26. Simon SH, Dobrosavljević V, Stratt RM (1990) J Chem Phys 93:2640

    Google Scholar 

  27. Sevian HM, Skinner JL (1992) Theor Chim Acta 82:29

    Article  CAS  Google Scholar 

  28. Müller K-P, Haarer D (1991) Phys Rev Lett 66:2344

    Article  Google Scholar 

  29. Jahn S, Müller K-P, Haarer D (1992) J Opt Soc Am B 9:925

    Article  CAS  Google Scholar 

  30. Abragam A (1961) The principles of magnetic resonance. Clarendon, Oxford

    Google Scholar 

  31. Breinl W, Friedrich J, Haarer D (1984) J Chem Phys 81:3915

    Article  CAS  Google Scholar 

  32. Walsh CA, Berg M, Narasimhan LR, Fayer MD (1987) J Chem Phys 86:77

    Article  CAS  Google Scholar 

  33. Schulte G, Grond W, Haarer D, Silbey R (1988) J Chem Phys 88:679

    Article  CAS  Google Scholar 

  34. Wertheim GK, Butler MA, West KW, Buchanan DNE (1974) Rev Sei Instrum 45:1369

    Article  Google Scholar 

  35. Zakaraya MG, Ulstrup J (1988) Opt Commun 68:107

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kador, L. (1994). Stochastic Interpretation of Inhomogeneous Spectroscopic Line Shapes. In: Richert, R., Blumen, A. (eds) Disorder Effects on Relaxational Processes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78576-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78576-4_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78578-8

  • Online ISBN: 978-3-642-78576-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics