Skip to main content

Molecular Dynamics in Polymers from Multidimensional NMR

  • Chapter
Disorder Effects on Relaxational Processes

Abstract

Relaxation processes in polymers [1–3] reflect the various degrees of disorder present in these materials, which range from highly crystalline to completely amorphous. However, most relaxation techniques are relatively insensitive to the disorder involved. The most common manifestations of the disorder are non-Arrhenius behaviour of the temperature dependence of mean correlation times and nonexponential relaxation. In the early mechanical and dielectric experiments, e.g., it was common to work at constant frequency and to assign various processes (a, β,γ...) to the relaxation maxima observed on changing the temperature [1–3]. Relaxation times τ c and apparent activation energies Ea were obtained by varying the frequency and noticing the temperature shift of the relaxation maxima. The early 1H-NMR experiments provided similar information [4]: correlation times of relatively slow motions could be determined from the inverse width of the broad line NMR spectrum at the temperature where motional narrowing was observed, those of faster motions from the inverse Larmor frequency at the minimum of the spin-lattice relaxation time T 1 in the laboratory, or T in the rotating frame. The marked increase in the accessible frequency range as well as improvements in instrumentation and automatisation under computer control recently led to a revival of dielectric relaxation techniques, see Chapter 10. Likewise the high precision with which light scattering can be measured today made this technique a powerful tool to probe collective dynamic phenomena over an extremely broad range of relaxation rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

DECODER:

direction exchange with correlation for orientational distribution evaluation and reconstruction

EP:

Relectron paramagnetic resonance

FT:

Fourier transform

KWW:

Kohlrausch Williams-Watts

NMR:

nuclear magnetic resonance

MAS:

magic angle spinning

PAS:

principal axes system

PEO:

poly (ethyleneoxide)

POM:

poly (oxymethylene)

PVAc:

poly (vinylacetate)

RAD:

reorientational angle distribution

WISE:

wideline separation

References

  1. McCrum NG, Read BE, Williams G (1967) Anelastic and dielectric effects in polymeric solids. Wiley, New York

    Google Scholar 

  2. Ferry JD (1980) Viscoelastic properties of polymers, 3rd ed Wiley, New York

    Google Scholar 

  3. de Gennes P-G (1979) Scaling concepts in polymer physics, Cornell University Press, London

    Google Scholar 

  4. Fedotov VD, Schneider H (1989) In: Diehl P, Fluck E, Günther H, Kosfeld R, Seelig J (eds) NMR Basic principles and progress vol 21 Springer, Berlin, Heidelberg, New York

    Google Scholar 

  5. Mehring M (1983) Principles of high resolution NMR in solids, 2nd edn (Springer, Berlin, Heidelberg, New York).

    Google Scholar 

  6. Komoroski RA (ed) (1986) High resolution NMR of synthetic polymers in bulk (VCH Deerfield Beach)

    Google Scholar 

  7. piess HW (1985) Adv. Polym. Sci. 66:23

    CAS  Google Scholar 

  8. Hagemeyer A, Schmidt-Rohr K, Spiess HW (1989) Adv Magn Reson 13:85

    Google Scholar 

  9. Spiess HW (1991) Chem Rev 91:1321

    Article  CAS  Google Scholar 

  10. Hagemeyer A, Brombacher L, Schmidt-Rohr K, Spiess HW (1990) Chem Phys Letters 167:583

    Article  CAS  Google Scholar 

  11. Schmidt-Rohr K (1991) Ph.D. Thesis, University of Mainz

    Google Scholar 

  12. Spiess HW, Schmidt-Rohr K (1992) Polymer Preprints (ACS) 33(1): 68

    CAS  Google Scholar 

  13. Schmidt-Rohr K, Spiess HW, Multidimensional solid-state NMR and polymers, Academic, London, in press

    Google Scholar 

  14. Wefing S, Spiess HW (1988) J Chem Phys 89:1219

    Article  CAS  Google Scholar 

  15. Wefing S, Kaufmann S, Spiess HW (1988) ibid 89:1234

    Google Scholar 

  16. Kaufmann S, Wefing S, Schaefer D, Spiess HW (1990) ibid. 93:197

    CAS  Google Scholar 

  17. Spiess HW (1978) In: NMR Basic principles and progress, loc cit Vol 15:55

    CAS  Google Scholar 

  18. Torchia DA, Szabo A (1982) J Magn Reson 49:107

    CAS  Google Scholar 

  19. Schaefer D, Spiess HW, Suter UW, Fleming WW (1990) Macromolecules 23:3431

    Article  CAS  Google Scholar 

  20. Jelinski LW, (1985) Annu Rev Mater Sci 15:3590

    Article  Google Scholar 

  21. Hirschinger J, Miura H, Gardner KH, English AD (1990) Macromolecules 23:2153

    Article  CAS  Google Scholar 

  22. Müller K, Wassmer K-H, Kothe G (1990) Adv Polym Sci 95:1

    Google Scholar 

  23. Lovesey SW, (1984) Theory of neutron scattering from condensed matter. Clarendon Oxford

    Google Scholar 

  24. Spiess HW (1980) J Chem Phys 72:6755

    Article  CAS  Google Scholar 

  25. Fujara F, Wefing S, Spiess HW (1986) J Chem Phys 84:4579

    Article  CAS  Google Scholar 

  26. Fujara F, Petry W, Schnauss W, Sillescu H (1988) J Chem Phys 89:1801

    Article  CAS  Google Scholar 

  27. Schmidt-Rohr K, Hehn M, Schaefer D, Spiess HW (1992) J Chem Phys 97:2247

    Article  CAS  Google Scholar 

  28. Kentgens APM, deJong AF, deBoer E, Veeman WS (1986) Macromolecules 18:1045

    Article  Google Scholar 

  29. Tagahashi Y, Tadoroko H (1973) Macromolecules 6:672

    Article  Google Scholar 

  30. Pschorn U, Rössler E, Sillescu H, Kaufmann S, Schaefer D, Spiess HW (1990) Macromolecules 23:398

    Article  Google Scholar 

  31. Schaefer D, Spiess HW (1992) J Chem Phys 97:7944

    Article  CAS  Google Scholar 

  32. Pechhold W, Blasenbrey S (1967) Kolloid Z 216/17:235

    Google Scholar 

  33. Geny F, Monnerie L, (1979) J. Polym. Sci (Polym. Phys. Ed.) 17:131, 147

    Article  CAS  Google Scholar 

  34. Zemke K, Chmelka BF, Schmidt-Rohr K, Spiess HW (1991) Macromolecules 24:6874

    Article  CAS  Google Scholar 

  35. Helfand E, Wassermann ZR, Weber TA, Skolnick J, Runnels JH (1981) J Chem Phys 75:4441

    Article  CAS  Google Scholar 

  36. Schmidt-Rohr K, Spiess HW (1991) Phys Rev Lett 66:3020

    Article  CAS  Google Scholar 

  37. Cohen MH, Crest GS, (1979/1981) Phys Rev B 20:1077; 24:4091

    Google Scholar 

  38. Götze W, Sjögren L (1992) Rep Progr Phys 55:241

    Article  Google Scholar 

  39. Schmidt-Rohr K, Clauss J, Spiess HW, (1992) Macromolecules 25:3273

    Article  CAS  Google Scholar 

  40. Maresch GG, Weber M, Dubinskii AA, Spiess HW (1992) Chem Phys Letters 193:134

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Spiess, H.W., Schmidt-Rohr, K. (1994). Molecular Dynamics in Polymers from Multidimensional NMR. In: Richert, R., Blumen, A. (eds) Disorder Effects on Relaxational Processes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78576-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78576-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78578-8

  • Online ISBN: 978-3-642-78576-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics