Molecular Dynamics in Polymers from Multidimensional NMR

  • H. W. Spiess
  • K. Schmidt-Rohr


Relaxation processes in polymers [1–3] reflect the various degrees of disorder present in these materials, which range from highly crystalline to completely amorphous. However, most relaxation techniques are relatively insensitive to the disorder involved. The most common manifestations of the disorder are non-Arrhenius behaviour of the temperature dependence of mean correlation times and nonexponential relaxation. In the early mechanical and dielectric experiments, e.g., it was common to work at constant frequency and to assign various processes (a, β,γ...) to the relaxation maxima observed on changing the temperature [1–3]. Relaxation times τ c and apparent activation energies Ea were obtained by varying the frequency and noticing the temperature shift of the relaxation maxima. The early 1H-NMR experiments provided similar information [4]: correlation times of relatively slow motions could be determined from the inverse width of the broad line NMR spectrum at the temperature where motional narrowing was observed, those of faster motions from the inverse Larmor frequency at the minimum of the spin-lattice relaxation time T 1 in the laboratory, or T in the rotating frame. The marked increase in the accessible frequency range as well as improvements in instrumentation and automatisation under computer control recently led to a revival of dielectric relaxation techniques, see Chapter 10. Likewise the high precision with which light scattering can be measured today made this technique a powerful tool to probe collective dynamic phenomena over an extremely broad range of relaxation rates.


Molecular Orientation Magic Angle Spin Semicrystalline Polymer Chain Motion Elastic Incoherent Structure Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



direction exchange with correlation for orientational distribution evaluation and reconstruction


Relectron paramagnetic resonance


Fourier transform


Kohlrausch Williams-Watts


nuclear magnetic resonance


magic angle spinning


principal axes system


poly (ethyleneoxide)


poly (oxymethylene)


poly (vinylacetate)


reorientational angle distribution


wideline separation


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McCrum NG, Read BE, Williams G (1967) Anelastic and dielectric effects in polymeric solids. Wiley, New YorkGoogle Scholar
  2. 2.
    Ferry JD (1980) Viscoelastic properties of polymers, 3rd ed Wiley, New YorkGoogle Scholar
  3. 3.
    de Gennes P-G (1979) Scaling concepts in polymer physics, Cornell University Press, LondonGoogle Scholar
  4. 4.
    Fedotov VD, Schneider H (1989) In: Diehl P, Fluck E, Günther H, Kosfeld R, Seelig J (eds) NMR Basic principles and progress vol 21 Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  5. 5.
    Mehring M (1983) Principles of high resolution NMR in solids, 2nd edn (Springer, Berlin, Heidelberg, New York).Google Scholar
  6. 6.
    Komoroski RA (ed) (1986) High resolution NMR of synthetic polymers in bulk (VCH Deerfield Beach)Google Scholar
  7. 7.
    piess HW (1985) Adv. Polym. Sci. 66:23Google Scholar
  8. 8.
    Hagemeyer A, Schmidt-Rohr K, Spiess HW (1989) Adv Magn Reson 13:85Google Scholar
  9. 9.
    Spiess HW (1991) Chem Rev 91:1321CrossRefGoogle Scholar
  10. 10.
    Hagemeyer A, Brombacher L, Schmidt-Rohr K, Spiess HW (1990) Chem Phys Letters 167:583CrossRefGoogle Scholar
  11. 11.
    Schmidt-Rohr K (1991) Ph.D. Thesis, University of MainzGoogle Scholar
  12. 12.
    Spiess HW, Schmidt-Rohr K (1992) Polymer Preprints (ACS) 33(1): 68Google Scholar
  13. 13.
    Schmidt-Rohr K, Spiess HW, Multidimensional solid-state NMR and polymers, Academic, London, in pressGoogle Scholar
  14. 14.
    Wefing S, Spiess HW (1988) J Chem Phys 89:1219CrossRefGoogle Scholar
  15. Wefing S, Kaufmann S, Spiess HW (1988) ibid 89:1234Google Scholar
  16. Kaufmann S, Wefing S, Schaefer D, Spiess HW (1990) ibid. 93:197Google Scholar
  17. 15.
    Spiess HW (1978) In: NMR Basic principles and progress, loc cit Vol 15:55Google Scholar
  18. 16.
    Torchia DA, Szabo A (1982) J Magn Reson 49:107Google Scholar
  19. 17.
    Schaefer D, Spiess HW, Suter UW, Fleming WW (1990) Macromolecules 23:3431CrossRefGoogle Scholar
  20. 18.
    Jelinski LW, (1985) Annu Rev Mater Sci 15:3590CrossRefGoogle Scholar
  21. 19.
    Hirschinger J, Miura H, Gardner KH, English AD (1990) Macromolecules 23:2153CrossRefGoogle Scholar
  22. 20.
    Müller K, Wassmer K-H, Kothe G (1990) Adv Polym Sci 95:1Google Scholar
  23. 21.
    Lovesey SW, (1984) Theory of neutron scattering from condensed matter. Clarendon OxfordGoogle Scholar
  24. 22.
    Spiess HW (1980) J Chem Phys 72:6755CrossRefGoogle Scholar
  25. 23.
    Fujara F, Wefing S, Spiess HW (1986) J Chem Phys 84:4579CrossRefGoogle Scholar
  26. 24.
    Fujara F, Petry W, Schnauss W, Sillescu H (1988) J Chem Phys 89:1801CrossRefGoogle Scholar
  27. 25.
    Schmidt-Rohr K, Hehn M, Schaefer D, Spiess HW (1992) J Chem Phys 97:2247CrossRefGoogle Scholar
  28. 26.
    Kentgens APM, deJong AF, deBoer E, Veeman WS (1986) Macromolecules 18:1045CrossRefGoogle Scholar
  29. 27.
    Tagahashi Y, Tadoroko H (1973) Macromolecules 6:672CrossRefGoogle Scholar
  30. 28.
    Pschorn U, Rössler E, Sillescu H, Kaufmann S, Schaefer D, Spiess HW (1990) Macromolecules 23:398CrossRefGoogle Scholar
  31. 29.
    Schaefer D, Spiess HW (1992) J Chem Phys 97:7944CrossRefGoogle Scholar
  32. 30.
    Pechhold W, Blasenbrey S (1967) Kolloid Z 216/17:235Google Scholar
  33. 31.
    Geny F, Monnerie L, (1979) J. Polym. Sci (Polym. Phys. Ed.) 17:131, 147CrossRefGoogle Scholar
  34. 32.
    Zemke K, Chmelka BF, Schmidt-Rohr K, Spiess HW (1991) Macromolecules 24:6874CrossRefGoogle Scholar
  35. 33.
    Helfand E, Wassermann ZR, Weber TA, Skolnick J, Runnels JH (1981) J Chem Phys 75:4441CrossRefGoogle Scholar
  36. 34.
    Schmidt-Rohr K, Spiess HW (1991) Phys Rev Lett 66:3020CrossRefGoogle Scholar
  37. 35.
    Cohen MH, Crest GS, (1979/1981) Phys Rev B 20:1077; 24:4091Google Scholar
  38. 36.
    Götze W, Sjögren L (1992) Rep Progr Phys 55:241CrossRefGoogle Scholar
  39. 37.
    Schmidt-Rohr K, Clauss J, Spiess HW, (1992) Macromolecules 25:3273CrossRefGoogle Scholar
  40. 38.
    Maresch GG, Weber M, Dubinskii AA, Spiess HW (1992) Chem Phys Letters 193:134CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • H. W. Spiess
  • K. Schmidt-Rohr

There are no affiliations available

Personalised recommendations