Electrophysiology of Stomata

  • Gerhard Thiel
  • Dietrich Gradmann
Part of the Progress in Botany/Fortschritte der Botanik book series (BOTANY, volume 55)


The discovery in 1968 that osmotically driven movement of guard cells is correlated with substantial transport of K+ through the plasmalemma (Fisher 1968) has challenged electrophysiologists ever since; but only recent progress in tailoring the experimental conditions suitable for the use of conventional microelectrodes (Blatt 1987a, b) or application of patch-clamp techniques to guard cell protoplasts (Schroeder et al. 1984) has paved the way to studying electrical parameters of the membrane in greater detail. Today, guard cells are, for diverse reasons, the electrophysiologically best investigated cells of vascular plants. First, because stomatal physiology has always been a major topic in botany. Second, because guard cells are exceptional in that they have no cytoplasmic contact to adjacent cells (Wille and Lucas 1984). This provides the researcher with the desired system of an electrically isolated cell and makes guard cells most suitable for both physiological and biophysical studies. Finally, for patch-clamp investigations, guard cells offer another benefit: the small protoplasts can be easily distinguished from the mass of cells from other tissues.


Guard Cell Outward Current Anion Channel Membrane Voltage Guard Cell Protoplast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antkowiak A, Mayer WE, Engelmann W (1991) J Exp Bot 42:901–910.CrossRefGoogle Scholar
  2. Assmann SM, Simoncini L, Schroeder JI (1985) Nature 318:285–287.CrossRefGoogle Scholar
  3. Beilby MJ, Walker NA (1981) J Exp Bot 32:43–54.CrossRefGoogle Scholar
  4. Berti A, Klieber HG, Gradmann D (1988) J Membr Biol 102:141–152.CrossRefGoogle Scholar
  5. Berti A, Gradmann D, Slayman CL (1992) Philos Trans R Soc Lond B 338:63–72.CrossRefGoogle Scholar
  6. Blatt MR (1987a) Planta 170:272–287.CrossRefGoogle Scholar
  7. Blatt MR (1987b) J Membr Biol 98:257–274.CrossRefGoogle Scholar
  8. Blatt MR (1988) J Membr Biol 102:235–246.CrossRefGoogle Scholar
  9. Blatt MR (1990) Planta 180:445–455.CrossRefGoogle Scholar
  10. Blatt MR (1991) J Membr Biol 124:95–112.PubMedCrossRefGoogle Scholar
  11. Blatt MR (1992) J Gen Physiol 99:615–644.PubMedCrossRefGoogle Scholar
  12. Blatt MR, Armstrong F (1993) Planta 191:330–341.CrossRefGoogle Scholar
  13. Blatt MR, Clint GM (1989) Planta 178:509–523.CrossRefGoogle Scholar
  14. Blatt MR, Slayman CL (1983) J Membr Biol 72:223–236.PubMedCrossRefGoogle Scholar
  15. Blatt MR, Thiel G (1993) Annu Rev Plant Physiol Mol Biol 44:543–567.CrossRefGoogle Scholar
  16. Blatt MR, Thiel G, Trentham DR (1990a) Nature 346:766–769.PubMedCrossRefGoogle Scholar
  17. Blatt MR, Beilby MJ, Tester M (1990b) J Membr Biol 114:205–223.PubMedCrossRefGoogle Scholar
  18. Busch H, Hedrich R, Raschke K (1990) Plant Physiol 93:96A (Abstr).Google Scholar
  19. Clint GM, Blatt MR (1989) Planta 178:495–508.CrossRefGoogle Scholar
  20. Cosgrove DJ, Hedrich R (1991) Planta 186:143–153.PubMedCrossRefGoogle Scholar
  21. DeSilva DLR, Hetherington AM, Mansfield TA (1985) New Phytol 100:473–482.CrossRefGoogle Scholar
  22. Fairley-Grenot KA, Assmann SM (1991) Plant Cell 3:1037–1044.PubMedCrossRefGoogle Scholar
  23. Fairley-Grenot KA, Assmann SM (1992a) Planta 186:282–293.CrossRefGoogle Scholar
  24. Fairley-Grenot KA, Assmann SM (1992b) J Membr Biol 128:103–113.PubMedGoogle Scholar
  25. Fairley-Grenot KA, Assmann SM (1993) Planta 189:410–419.CrossRefGoogle Scholar
  26. Fisher RA (1968) Science 160:784–785.CrossRefGoogle Scholar
  27. Gradmann D, Hansen UP, Long WS, Slayman CL, Warncke J (1978) J Membr Biol 39:333–367.PubMedCrossRefGoogle Scholar
  28. Gradmann D, Blatt MR, Thiel G (1993) J Memb Biol (in press).Google Scholar
  29. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Pflügers Archiv 391:85–100.PubMedCrossRefGoogle Scholar
  30. Hansen UP (1990) Bot Acta 103:15–23.Google Scholar
  31. Hedrich R, Jeromin A (1992) Philos Trans R Soc Lond B 338:31–38.CrossRefGoogle Scholar
  32. Hedrich R, Busch H, Raschke K (1990) EMBO J 9:3889–3892.PubMedGoogle Scholar
  33. Hille B (1992) Ionic channels of excitable membranes. Sinauer, Sunderland, Mass.Google Scholar
  34. Hosoi S, Iino M, Shimazaki K (1988) Plant Cell Physiol 9:907–911.Google Scholar
  35. Irving HR, Gehring CA, Parish RW (1992) Proc Natl Acad Sci USA 89:1790–1794.PubMedCrossRefGoogle Scholar
  36. Kasamo K (1981) Plant Cell Physiol 22:1257–1267.Google Scholar
  37. Keller BU, Hedrich R, Raschke K (1989) Nature 341:450–453.CrossRefGoogle Scholar
  38. Korn SJ, Horn R (1989) J Gen Physiol 94:789–821.PubMedCrossRefGoogle Scholar
  39. Kubo Y, Baldwin TJ, Jan YN, Jan LY (1993) Nature 362:127–133.PubMedCrossRefGoogle Scholar
  40. Läuger P (1991) Electrogenic pumps. Sinauer, Sunderland, Mass.Google Scholar
  41. Lee Y, Assmann SM (1991) Proc Natl Acad Sci USA 88:2127–2131.PubMedCrossRefGoogle Scholar
  42. Li W, Assmann SM (1993) Proc Natl Acad Sci USA 90:262–266.PubMedCrossRefGoogle Scholar
  43. Linder B, Raschke K (1992) FEBS Lett 313:27–30.PubMedCrossRefGoogle Scholar
  44. Lohse G, Hedrich R (1992) Planta 188:206–214.CrossRefGoogle Scholar
  45. MacRobbie EAC (1988) In: Baker DA, Hull JL (eds) Solute transport in plant cells and tissues. Harlow, Longman, Essex, pp 453–497.Google Scholar
  46. MacRobbie EAC (1989) Planta 178:231–241.CrossRefGoogle Scholar
  47. MacRobbie EAC (1992) Philos Trans R Soc Lond B 338:5–18.CrossRefGoogle Scholar
  48. McAinsh MR, Brownlee C, Hetherington AM (1991) Proc R Soc Lond B 243:195–201.CrossRefGoogle Scholar
  49. McAinsh MR, Brownlee C, Hetherington AM (1992) Plant Cell 4:1113–1122.PubMedCrossRefGoogle Scholar
  50. Mansfield TA, Hetherington AM, Atkinson CJ (1990) Annu Rev Plant Physiol Mol Biol 41:55–75.CrossRefGoogle Scholar
  51. Marten I, Lohse G, Hedrich R (1991) Nature 353:758–762.CrossRefGoogle Scholar
  52. Marten I, Zeilinger C, Redhead C, Landry DW, Al-Awqati Q, Hedrich R (1992) EMBO J 11:3569–3575.PubMedGoogle Scholar
  53. Mohr H, Schopfer P (1992) Pflanzenphysiologie, 4th edn, Springer, Berlin Heidelberg New York, pp 253.Google Scholar
  54. Moran N, Ehrenstein G, Iwasa K, Bare C, Mischle C (1984) Science 226:835–838.PubMedCrossRefGoogle Scholar
  55. Morris CE, Horn R (1991) Science 251:1246–1249.PubMedCrossRefGoogle Scholar
  56. Mummert H, Gradmann D (1991) J Membr Biol 124:265–273.PubMedCrossRefGoogle Scholar
  57. Oleson DR, DeFelice LJ, Donahoe RM (1993) J Membr Biol 132:229–241.PubMedGoogle Scholar
  58. Pallas JE (1966) Q Rev Biol 41:365–383.PubMedCrossRefGoogle Scholar
  59. Pedersen PL, Carafoli E (1987) TIBS 12:146–150.Google Scholar
  60. Pusch M, Neher E (1988) Pflügers Archiv 411:205–214.CrossRefGoogle Scholar
  61. Raschke K (1975) Annu Rev Plant Physiol 26:309–340.CrossRefGoogle Scholar
  62. Raschke K, Hedrich R, Beckmann U, Schroeder JI (1988) 101:283–294.Google Scholar
  63. Sachs F (1989) In: Stein WD, Bronner F (eds) Cell shape: determinants, regulation and regulatory role. Academic Press, San Diego, CA, pp 63–92.Google Scholar
  64. Sanders D (1984) In: Gerencser GA (ed) Chloride transport coupling in biological membranes and epithelia. Elsevier, Amsterdam, pp 63–120.Google Scholar
  65. Sanders D, Hansen UP (1981) J Membr Biol 58:139–153.CrossRefGoogle Scholar
  66. Schaller GE, Sussman MR (1988) Planta 173:509–518.CrossRefGoogle Scholar
  67. Schroeder JI (1988) J Gen Physiol 92:667–683.PubMedCrossRefGoogle Scholar
  68. Schroeder JI (1992) Philos Trans R Soc Lond B 338:83–90.CrossRefGoogle Scholar
  69. Schroeder JI, Fang HH (1991) Proc Natl Acad Sci USA 88:11583–11587.PubMedCrossRefGoogle Scholar
  70. Schroeder JI, Hagiwara S (1989) Nature 338:247–430.CrossRefGoogle Scholar
  71. Schroeder JI, Hagiwara S (1990) Proc Natl Acad Sci USA 87:9305–9309.PubMedCrossRefGoogle Scholar
  72. Schroeder JI, Keller BU (1992) Proc Natl Acad Sci USA 89:5025–5029.PubMedCrossRefGoogle Scholar
  73. Schroeder JI, Hedrich R, Fernandez JM (1984) Nature 312:361–362.CrossRefGoogle Scholar
  74. Schroeder JI, Raschke K, Neher E (1987) Proc Natl Acad Sci USA 84:4108–4122.PubMedCrossRefGoogle Scholar
  75. Serrano EE, Zeiger E, Hagiwara S (1988) Proc Natl Acad Sci USA 85:436–440.PubMedCrossRefGoogle Scholar
  76. Slayman CL, Long WS, Gradmann D (1976) Biochim Biophys Acta 426:737–744.Google Scholar
  77. Takeuchi Y, Kishimoto U (1983) Plant Cell Physiol 24:1401–1409.Google Scholar
  78. Thiel G, Blatt MR (1991) J Plant Physiol 138:326–334.Google Scholar
  79. Thiel G, MacRobbie EAC, Blatt MR (1992) J Membr Biol 126:1–18.PubMedGoogle Scholar
  80. Thiel G, Homann U, Gradmann D (1993) J Membr Biol 134:53–66.PubMedGoogle Scholar
  81. White RE, Schonbrunn A, Armstrong DL (1991) Nature 351:570–573.PubMedCrossRefGoogle Scholar
  82. Wille A, Lucas WJ (1984) Planta 160:129–142.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Gerhard Thiel
    • 1
  • Dietrich Gradmann
    • 1
  1. 1.Pflanzenphysiologisches Institutder Universität Untere Karspüle 2GöttingenGermany

Personalised recommendations