Bistable Media

  • Alexander S. Mikhailov
Part of the Springer Series in Synergetics book series (SSSYN, volume 51)


Bistable media consist of elements that have two steady states which are stable under sufficiently small perturbations. Stronger perturbations can cause transitions between these states. The fundamental form of a pattern in bistable media is a trigger wave, which represents a propagating front of transition from one stationary state into the other. The propagation velocity of a flat front is uniquely determined by the properties of the bistable medium. To initiate a spreading wave of transition from a homogeneous steady state, one should create a local perturbation which exceeds a critical nucleus for the bistable medium.


Propagation Velocity Transition Wave Propagation Speed Mechanical Analogy Critical Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 2.1
    F. Schlögl: Z. Phys. 253, 147 (1982)Google Scholar
  2. 2.2
    V.A. Vasilev, Yu.M. Romanovskii, D.S. Chernavskii, V.G. Yakhno: Autowave Processes in Kinetic Systems (Reidel, Dordrecht 1986)Google Scholar
  3. 2.3
    A.G. Merzhanov, E.N. Rumanov: Usp. Fiz. Nauk 151, 553–593 (1987)CrossRefGoogle Scholar
  4. Zh. Eksp. Teor. Fiz. Sov. Phys. — JETPGoogle Scholar
  5. Pisma Zh. Eksp. Teor. Fiz. Sov. Phys. — JETP Lett.Google Scholar
  6. Dokl. Akad. Nauk SSSR Sov. Phys. — Dokl.Google Scholar
  7. Biofizika Sov. BiophysicsGoogle Scholar
  8. Izv. VUZ. Radiofizika Sov. RadiophysicsGoogle Scholar
  9. Teor. Mat. Fiz. Sov. Phys. — Theor. Math. Phys.Google Scholar
  10. 2.4
    A.V. Gurevich, R.G. Mints: Usp. Fiz. Nauk 142, 61–98 (1984)CrossRefGoogle Scholar
  11. 2.5
    R. Luther: Z. Elektrochemie 12, 596–600 (1906).CrossRefGoogle Scholar
  12. reprinted in: J. Chem. Educ. 64, 740 (1987)Google Scholar
  13. 2.6
    P. Fisher: Ann. Eugenics 7, 335–367 (1937)Google Scholar
  14. 2.7
    Ya.B. Zeldovich, D.A. Frank-Kamenetskii: Zh. Fiz. Khim. 12, 100–105 (1938)Google Scholar
  15. 2.8
    Ya.B. Zeldovich, G.I. Barenblatt, V.B. Librovich, G.M. Makhviladze: Mathematical Theory of Combustion and Explosion (Consultants Bureau, New York 1985)CrossRefGoogle Scholar
  16. 2.9
    G.H. Markstein: J. Aeronaut. Sci. 18, 199–207 (1951)Google Scholar
  17. 2.10
    A.N. Kolmogorov, I.G. Petrovskii, N.S. Piskunov: Bull. Mosk. Gos. Univ., Sekt. Matematika i Mekhanika 1, 1–26 (1937)Google Scholar
  18. 2.11
    T.S. Akhromeyeva, S.P. Kurdyumov, G.G. Malinetskii, A.A. Samarskii: Phys. Rep. 176, 189–370 (1989)CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Alexander S. Mikhailov
    • 1
  1. 1.Department of PhysicsMoscow State UniversityMoscowUSSR

Personalised recommendations