Skip to main content

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 14))

Abstract

The interferons (IFN) are a family of proteins secreted by mammalian cells in response to various inducers (Baglioni 1979; Revel 1979; Stewart 1979; Friedman 1981; Pestka 1981; Torrence 1982; Sehgal et al. 1983). The interferons are divided into three different types α, β, γ, whereby each class can be summarized from different species for which a separate IFN gene is coded. The interferons are pleotropic modifiers of cell functions as seen from their antiviral properties (Sehgal et al. 1983), the inhibition of cell growth, the inhibition of tumor cell proliferation, their augmentation of natural killer (NK) activity, the modulation of immune response, the interaction of nuclear formation and the delay of cells entering into S-phase of the cell cycle (Suhadolnik et al. 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alster D, Brozda D, Kitade Y, Wong A, Charubala R, Pfleiderer W, Torrence PF (1986) 2′,5′-Phosphodiesterase activity depends upon the presence of a 3′-hydroxyl moiety in the penultimate position of the oligonucleotide substrate. Biochem Biophys Res Commun 141:551–561.

    Google Scholar 

  • Baglioni C (1979) Interferone-induced enzymatic activities and their role in the antiviral state. Cell 17:255–264.

    PubMed  CAS  Google Scholar 

  • Battistini C, Brasca MG, Fustinoni S, Lazzari E (1992) An efficient and stereoselective synthesis of 2′,5′-oligo-(Sp)-thioadenylates. Tetrahedron 48:3209–3226.

    CAS  Google Scholar 

  • Burgers PMJ, Eckstein F (1978) Absolute configuration of the diastereomers of adenosine 5′-O-(l-thiophosphate): consequences for the stereochemistry of polymerization by DNA-depend-ent RNA polymerase from Escherichia coli. Proc Natl Acad Sci USA 75:4798–4800.

    PubMed  CAS  Google Scholar 

  • Charachon G, Sobol RW, Bisbal C, Salchzada T, Silhol M, Charubala R, Pfleiderer W, Lebleu B, Suhadolnik RJ (1990) Phosphorothioate analogues of (2′-5′) (4): agonist and antagonist activities in intact cells. Biochemistry 29:2550–2556.

    PubMed  CAS  Google Scholar 

  • Charubala R, Pfleiderer W (1980a) Synthesis and properties of adenylate trimers A2′p5′A2′p5′A, A2′p5′A3′p5′A, and A3′p5′A2′p5′A. Tetrahedron Lett 21:1933–1936.

    CAS  Google Scholar 

  • Charubala R, Pfleiderer W (1980b) Synthesis and properties of 3′-deoxyadenylate trimer dA2′p5′A2′p5′A. Tetrahedron Lett 21:4077–4080.

    CAS  Google Scholar 

  • Charubala R, Pfleiderer W (1982) Synthesis of inosinate trimer I2′p5′I2′p5′I and tetramer I2′p5′I2′p5′2′p5′I. Tetrahedron Lett 23:4789–4792.

    CAS  Google Scholar 

  • Charubala R, Pfleiderer W (1988) The chemical synthesis of (2′-5′)-P-thioadenylate dimers, trimers and tetramers. Nucleosides Nucleotides 7:703–706.

    CAS  Google Scholar 

  • Charubala R, Pfleiderer W (1990a) Synthesis and properties of inosinate trimer I2′p5′I2′p5′I and inosinate tetramer I2′p5′I2′p5′I2′p5′L Heterocycles 30:1141–1153.

    CAS  Google Scholar 

  • Charubala R, Pfleiderer W (1990b) Chemical synthesis, characterisation and biological properties of four possible trimeric 3′-deoxyadenosine (cordycepin) phosphorothioates and the 3′-5′-adenylate analogues. Collect Czech Chem Commun Spec Issue 55:181–184.

    Google Scholar 

  • Charubala R, Pfleiderer W (1992) Syntheses and characterisation of phosphorothioate analogues of (2′-5′) adenylate dimer, trimer and their monophosphates. Helv Chim Acta 75:471–479.

    CAS  Google Scholar 

  • Charubala R, Uhlmann E, Pfleiderer W (1981) Synthese und Eigenschaften vom Adenylyl-adenylyl-adenosinen. Liebigs Ann Chem: 2392-2406.

    Google Scholar 

  • Charubala R, Uhlmann E, Himmelsbach F, Pfleiderer W (1987) Chemical synthesis of the 2′-5′-cordycepin trimer core. Helv Chim Acta 70:2028–2038.

    CAS  Google Scholar 

  • Charubala R, Pfleiderer W, Sobol RW, Li SW, Suhadolnik RJ (1989a) Chemical synthesis of adenylyl-(2′-5′)-adenylyl-(2′-5′)-8-azidoadenosine, and activation and photoaffinity labelling of RNase L by (32P) p5′A2′p5′A2′p5′N38A. Helv Chim Acta 72:1354–1361.

    CAS  Google Scholar 

  • Charubala R, Pfleiderer W, Alster D, Brozda D, Torrence PF (1989b) Synthesis and biological activity of a bis-substituted 3′-deoxyadenosine analog of 2-5 A. Nucleosides Nucleotides 8:273–284.

    CAS  Google Scholar 

  • Charubala R, Pfleiderer W, Suhadolnik RJ, Sobol RW (1991) Chemical synthesis and biological’activity of 2′-5′-phosphorothioate tetramer cores. Nucleosides Nucleotides 10(1–3): 383–388.

    CAS  Google Scholar 

  • Chat’topadhyaya JB (1980) Synthesis of adenylyl(2′-5′)adenylyl-(2′-5′)adenosine (2-5 A core). Tet rahedron Lett 21:4113–4116.

    CAS  Google Scholar 

  • Creasey AA, Bartholowmew JC, Merigen TC (1980) The importance of GO in the site of action of interferons in the cell cycle. Exp Cell Res 134:155–160.

    Google Scholar 

  • Den Hartog JAJ, Doornbos J, Crea R, Van Boom JH (1979) Synthesis of the 5′-triphosphate of a trimer containing 2′-5′internucleotide linked riboadenosines. Recueil 98:469–470.

    Google Scholar 

  • Den Hartog JAJ, Wijnands RA, Van Boom JH, Crea R (1981) Chemical synthesis of pppA2′p5′A2′p5′A, an interferon induced inhibitor of protein synthesis, and some functional analogues. J Org Chem 46:2242–2251.

    Google Scholar 

  • Devash Y, Gera A, Willis DH, Reichmann M, Pfleiderer W, Charubala R, Sela I, Suhadolnik RJ (1984) 5′-Dephosphorylated 2′,5′-adenylate trimer and its analogs. J Biol Chem 259:3482–3486.

    PubMed  CAS  Google Scholar 

  • Doetsch PW, Wu JM, Sawada Y, Suhadolnik RJ (1981a) Synthesis and characterisation of (2′-5′)ppp 3′dA(p3′dA)n, an analogue of (2′-5′)ppA(pA)n. Nature (Lond) 291:355–358.

    CAS  Google Scholar 

  • Doetsch PW, Suhadolnik RJ, Sawada Y, Mosca JD, Flick MB, Reichenbach NL, Dang AQ, Wu JD, Charubala R, Pfleiderer W, Henderson EE (1981b) Core (2′-5′) oligoadenylate and the cor dycepin analog: inhibitors of Epstein-Barr virus induced transformation of human lymphocytes in the absence of interferon. Proc Natl Acad Sci USA 78:6699–6703.

    PubMed  CAS  Google Scholar 

  • Drocourt JL, Dieffenbach CW, Ts’o PO, Justesen J, Thang MN (1982) Structural requirements of (2′-5′)-oligoadenylate for protein synthesis inhibition in human fibroblasts. Nucleic Acids Res 10:2163–2174.

    PubMed  CAS  Google Scholar 

  • Eckstein F (1985) Nucleoside phosphorothioates. Annu Rev Biochem 54:367–402.

    PubMed  CAS  Google Scholar 

  • Engels J (1980) Synthesis of 2′-end modified 2′,5′-adenylate trimers. Tetrahedron Lett 21:4339–4342.

    CAS  Google Scholar 

  • Engels J, Krahmer U (1979) Gezielte Synthese des trimeren Isoadenylats A2′p5′A2′p5′A. Angew Chem 91:1007.

    CAS  Google Scholar 

  • Eppstein DA, Marsh VY, Schryver BB, Larsen MA, Barnett JW, Verheyden JPH, Prisbe EJ (1982) Analogs of (A2′p)nA correlation of structure of analogs of ppp(A2′p)2A and (A2′p)2A with stability and biological activity. J Biol Chem 257:13390–13397.

    PubMed  CAS  Google Scholar 

  • Friedman RM (1981) A primer. Academic Press, New York.

    Google Scholar 

  • Friedman RM, Metz DH, Esteban RM, Tovell DR, Ball LA, Kerr IM (1972) Mechanism of interferon action: inhibition of viral messenger ribonucleic acid translation in L cell extracts. J Virol 10:1184–1198.

    PubMed  CAS  Google Scholar 

  • Gioeli C, Kwiatskowski M, Öberg B, Chattopadhyaya JB (1981) The tetraisopropyldisiloxane-1,3-diyl: a versatile protecting group for the synthesis of adenylyl(2′-5′)adenylyl(2′-5′)adenosine (2-5 A core). Tetrahedron Lett 22:1741–1744.

    CAS  Google Scholar 

  • Gosselin G, Imbach JL (1981) Synthese du Trimere de la ß-D-Xylofuranosyl-9-adenine a Liaisons Interaucleotidiques 2′-5′. Tetrahedron Lett 22:4699–4702.

    CAS  Google Scholar 

  • Gresser I (1977) Commentary: on the varied biological effects of interferon. Cell Immunol 34:406–415.

    PubMed  CAS  Google Scholar 

  • Hayakawa Y, Nobori T, Noyori R (1985) Synthesis of 2′-end-modified 2′,5′-oligoadenylates. Nucleic Acids Res Symp Ser 16:129–132.

    CAS  Google Scholar 

  • Henderson EE, Doetsch PW, Charubala R, Pfleiderer W, Suhadolnik RJ (1982) Inhibition of Epstein-Barr virus-associated nuclear antigen (EBNA) induction by (2′-5′) oligoadenylate and the cordycepin analog: mechanism of action for inhibition of EBV-induced transformation. Virology 122:198–201.

    PubMed  CAS  Google Scholar 

  • Herberman RB, Ortaldo JR, Mantovani A, Hobbs DS, King H, Pestka S (1982) Effect of human recombinant interferons on cytotoxic activity of natural killer cells and monocytes. Cell Im munol 67:160–167.

    CAS  Google Scholar 

  • Herdewijn P, Charubala R, De Clercq E, Pfleiderer W (1989a) Synthesis of 2′-5′ connected oligonuc-leotides. Prodrugs for antiviral and antitumoral nucleosides. Helv Chim Acta 72:1739–1748.

    CAS  Google Scholar 

  • Herdewijn P, Charubala R, Pfleiderer W (1989b) Modified oligomeric 2′-5′A analogues: synthesis of 2′-5′ oligonucleotides with 9-(3′-azido-3′-deoxy-ß-D-xylofuranosyl) adenine and 9-(3′-amino-3′-deoxy-ß-D-xylofuranosyl)adenine as modified nucleosides. Helv Chim Acta 72:1729–1738.

    CAS  Google Scholar 

  • Herdewijn P, Ruf K, Pfleiderer W (1991) Synthesis of modified oligomeric 2′-5′ A analogues: potential antiviral agents. Helv Chim Acta 74:7–23.

    CAS  Google Scholar 

  • Himmelsbach F, Schulz BS, Trichtinger T, Charubala R, Pfleiderer W (1984) The p-nitrophenylethyl (NPE) group. Tetrahedron 59:59–72.

    Google Scholar 

  • Hovanessian AG, Brown RE, Kerr IM (1977) Synthesis of low molecular weight inhibitor of protein synthesis with enzyme from interferon treated cells. Nature 268:537–539.

    PubMed  CAS  Google Scholar 

  • Ikehara M, Oshie K, Ohtsuka E (1979) Synthesis of a protein biosynthesis inhibitor, 5′-triphos-phoryladenylyl (2′-5′)adenylyl-(2′-5′) adenosine. Tetrahedron Lett 20:3677–3680.

    Google Scholar 

  • Imai J, Torrence PF (1981) Bis (2,2,2-trichloroethyl) phosphorodichloridite as a reagent for the phsophorylation of oligonucleotides: preparation of 5′-phosphorylated 2′-5′-oligoadenylates. J Org Chem 46:4015–4021.

    CAS  Google Scholar 

  • Imai J, Johnston I, Torrence PF (1982) Chemical modification potentiates the biological activities of 2–5 A and congeners. J Biol Chem 257:12739–12741.

    PubMed  CAS  Google Scholar 

  • Imai J, Lesiak K, Torrence PF (1985) Respective role of each of the purine N6-amino groups of 5′-O-triphosphoryladenylyl (2′-5′)adenylyl(2′-5′)adenosine in binding to and activation of RNase L. J Biol Chem 260:1390–1393.

    PubMed  CAS  Google Scholar 

  • Itkes AV, Karpeisky M Ya, Kartasheva ON, Mikhailov SN, Mosieyev GP, Pfleiderer W, Charubala R, Yakaovlev GI (1988) A route to 2′,5′-oligoadenylates with increased stability towards phosphodiesterases. FEBS Lett 236:325–328.

    PubMed  CAS  Google Scholar 

  • Jäger A, Engels J (1981) Synthesis of methylphosphonate and methylphosphotriester analogues of 2′,5′-adenylate trimers. Nucleic Acids Res Symp Ser 9:149–152.

    Google Scholar 

  • Jones SS, Reese CB (1979) Chemical synthesis of 5′-O-triphosphoryladenylyl(2′-5′)adenylyl(2′-5′)adenosine (2-5 A). J. Am Chem Soc 101:7399–7401.

    CAS  Google Scholar 

  • Kanaou M, Ohmori H, Takaku T, Yokoyama S, Kawai G, Suhadolnik RJ, Sobol RW Jr (1990) Chemical synthesis and biological activities of analogues of 2′5′-oligoadenylates containing 8-substituted adenosine derivatives. Nucleic Acids Res 18:4439–4446.

    Google Scholar 

  • Kariko K, Li SW, Sobol RW Jr, Suhadolnik RJ, Charubala R, Pfleiderer W (1987a) Phosphoro-thioate analogues of 2′,5′-oligoadenylate activation of 2′,5′-oligoadenylate dependent endoribo-nuclease by 2′5′-phosphorothioate cores and 5′-monophosphates. Biochemistry 26:7136–7142.

    PubMed  CAS  Google Scholar 

  • Kariko K, Sobol RW, Suhadolnik L, Li SW, Reichenbach NL, Suhadolnik RJ, Charubala R, Pfleiderer W (1987b) Phosphorothioate analogues of 2′-5′-oligoadenylate. Enzymatically synthesized 2′-5′-phosphorothioate dimer and trimer: unequivocal structural assignment and activation of 2′-5‱-oligoadenylate-dependent endoribonuclease. Biochemistry 26:7127–7135.

    PubMed  CAS  Google Scholar 

  • Karpeisky MYu, Beigelman LN, Mikhailov SN, Padyukova NSh, Smrt J (1982) Synthesis of adenylyl-(2‱5‱)adenylyl-(2′-5‱)adenosine. Collect Czech Chem Commun 47:156–166.

    Google Scholar 

  • Kerr IM, Brown RE (1978) pppA2′p5′A2′p5′A: an inhibitor of protein synthesis synthesised with an enzyme from interferon-treated cells. Proc Natl Acad Sci USA 75:256–260.

    PubMed  CAS  Google Scholar 

  • Kerr IM, Brown RE, Ball LA (1974) Increased sensitivity of cell-free protein synthesis to double-stranded RNA after interferon treatment. Nature (Lond) 250:57–59.

    CAS  Google Scholar 

  • Kitade Y, Nakata Y, Hirota K, Maki Y, Pabuccuglu A, Torrence PF (1991) 8-Methyladenosine substituted analogues of 2–5 A: synthesis and their biological activities. Nucleic Acids Res 19:4103–4108.

    PubMed  CAS  Google Scholar 

  • Kvasyuk El, Kulak TI, Zaitseva GT, Mikhailopulo IA, Charubala R, Pfleiderer W (1984) Synthesis of a modified 2′,5′-adenylate trimer with a 2′,3′-di-O-(2-carboxyethyl)-ethylidene terminal group. Tetrahedron Lett 25:3683–3686.

    CAS  Google Scholar 

  • Kvasyuk El, Kulak TI, Khirpach NB, Mikhailopulo IA, Uhlmann E, Charubala R, Pfleiderer W (1987) Preparative synthesis of trimeric (2–5) oligoadenylic acid. Synthesis 4:535–541.

    Google Scholar 

  • Kwiatkowski M, Gioelli C, Chattopadhyaya JB, Öberg B, Drake AF (1982) Chemical synthesis and conformation of “arabino analogues” of (2′-5‱)-isooligoadenylates and their application as probes to determine the structural requirements of cellular exonucleases. Chem Scr 19:49–56.

    CAS  Google Scholar 

  • Lee C, Suhadolnik RJ (1985) 2′,5′-Oligoadenylates chiral at phosphorus: enzymatic synthesis, properties and biological activities of 2′,5′-phosphorothioate trimer and tetramer analogues synthesised from (Sp)-ATPaS. Biochemistry 24:551–555.

    PubMed  CAS  Google Scholar 

  • Lesiak K, Torrence PF (1986) Synthesis and biological activities of oligo (8-bromoadenylates) as analogues of 5′-O-triphosphoadenylyl-(2′-5′) adenylyl (2′-5′) adenosine. J Med Chem 29: 1015–1022.

    PubMed  CAS  Google Scholar 

  • Lesiak K, Imai J, Floyd-Smith G, Torrence PF (1983) Biological activities of phosphodiester linkage isomers of 2–5 A. J Biol Chem 258:13082–13088.

    PubMed  CAS  Google Scholar 

  • Letsinger RL, Zhang G, Sun DK, Ikeuchi T, Sarin PS (1989) Cholesteryl-conjugated oligonucleo-tides: synthesis, properties and activity as inhibitors of replication of human immunodeficiency virus in cell culture. Proc Natl Acad Sci USA 86:6553–6556.

    PubMed  CAS  Google Scholar 

  • Luxembourg A (1988) 2–5 A mediator in search of a function. Bull Inst Pasteur 86:373–417.

    CAS  Google Scholar 

  • Mackellar C, Graham D, Will DW, Burgess S, Brown T (1992) Synthesis and physical properties of anti HIV antisense oligonucleotides bearing terminal lipophilic groups. Nucleic Acids Res 20:3411–3417.

    PubMed  CAS  Google Scholar 

  • Markham AK, Porter RA, Gait MJ, Sheppard RC, Kerr IM (1979) Rapid chemical synthesis and circular dichroism properties of some 2–-5–-linked oligoadenylates. Nucleic Acids Res 6:2569–2582.

    PubMed  CAS  Google Scholar 

  • Martin EM, Bridsall NJM, Brown RE, Kerr IM (1979) Enzyme synthesis, characterisation, and NMR spectra of pppA2′p5′a2′p5′A and related oligonucleotides: comparison with chemically synthesized material. Eur J Biochem 95:245–257.

    Google Scholar 

  • Mikhailopulo IA, Kvasyuk El, Kulak TI, Shulyakovskaya SM, Makarenko MV, Mikhailov SN, Charubala R, Pfleiderer W (1991) Specificities of rabbit anti-(2′-5′)oligoadenylate antibodies towards phosphorothioate and seco analogs of oligoadenylate. Nucleic Acids Res Symp Ser 24:67–70.

    CAS  Google Scholar 

  • Mikhailov SN, Pfleiderer W (1985) Synthesis of a new class of acyclic 2′5′ and 3′,5′ oligonucleotide analogs based on 9 (l,5-dihydroxy-4 (S)-hydroxymethyl–3-oxapent-2 (R)-yl)-adenine. Tetrahedron Lett 26:2059–2062.

    CAS  Google Scholar 

  • Mikhailov SN, Charubala R, Pfleiderer W (1991) 3′-Deoxyadenylyl-(2′-5′)-3′-deoxyadenylyl-(2′w)-9-(w-hydroxyalkyl) adenines. Helv Chim Acta 74:887–891.

    CAS  Google Scholar 

  • Minks MA, West DK, Benvin S, Baglioni C (1979) Metabolic stability of 2′-5′-oligo (A) and activity of 2′-5′-oligo (A) dependent endonuclease in extracts of interferon-treated and central HeLa cells. J Biol Chem 254:10180–10183.

    PubMed  CAS  Google Scholar 

  • Montefiori DM, Sobol RW Jr, Li SW, Reichenbach NL, Suhadolnik RJ, Charubala R, Pfleiderer W, Modliszewski A, Robinson WE Jr, Mitchell WM (1989) Phosphorothiate and cordycepin analogues of 2′-5′-oligoadenylate: inhibition of human immunodeficiency virus type 1 reverse transcriptase and infection in vitro. Proc Natl Acad Sci USA 86:7191–7194.

    PubMed  CAS  Google Scholar 

  • Müller WEG, Weiler BE, Charubala R, Pfleiderer W, Leserman L, Sobol RW, Suhadolnik RJ, Schröder HC (1991) Cordycepin analogues of 2′.5′-oligoadenylate inhibit human immunodeficiency virus infection via inhibition of reverse transcriptase. Biochemistry 30:2027–2033.

    PubMed  Google Scholar 

  • Nelson PS, Bach CT, Verheyden JPH (1984) Synthesis of P-thioadenylyl-(2′-5′) adenosine and P-thioadenylyl-(2′-5′)-P-thioadenylyl-(2′-5′) adenosine. J Org Chem 49:2314–2317.

    CAS  Google Scholar 

  • Noyori R, Uchiyama M, Nobori T, Hirose M, Hayakawa Y (1992) Practical synthesis of 2′-5′-linked oligoadenylates (2-5A oligomers). Aust J Chem 45:205–225.

    CAS  Google Scholar 

  • Nyilas A, Vrang C, Drake A, Öberg B, Chattopadhyaya JB (1986) The cordycepin analogue of 2,5A and its threo isomer. Chemical synthesis, conformation and biological activity. Acta Chem Scand B 40:687–688.

    Google Scholar 

  • Ogilvie KK, Theriault NY (1979) The synthesis of 2′-5′-linked oligoribonucleotides. Tetrahedron Lett 20:2111–2114.

    Google Scholar 

  • Ohtsuka E, Yamane A, Ikehara M (1982) A new synthetic method for 5′-triphosphoryl-adenylyl (2′-5′)-adenylyl (2′-5′) adenosine and 2–5 A core using 3–-O-tetrahydropyranyl-adenosine derivatives. Chem Pharm Bull 30:376–378.

    CAS  Google Scholar 

  • Pestka S (ed) (1981) The interferons. Methods in enzymology, vols 78 and 79. Academic Press, New York.

    Google Scholar 

  • Pfleiderer W, Charubala R (1985a) In: Böger P (ed) Wirkstoffe in Zellgeschehen:2′-5′-verknüpfte Oligonucleotide eine neue Gruppe antiviral-antitumor aktiver Wirkstoffe. Univ Verlag, Konstanz, pp 9–31.

    Google Scholar 

  • Pfleiderer W, Himmelsbach F, Charubala R, Schirmeister H, Beiter AH, Schulz BS, Trichtinger T (1985b) The p-nitrophenylethyl group — a universal blocking group in nucleoside and nucleotide chemistry. Nucleosides Nucleotides 4:81–94.

    CAS  Google Scholar 

  • Pfleiderer W, Schwarz M, Schirmeister H (1986) New developments in nucleotide chemistry. Chem Scr 26:147–154.

    CAS  Google Scholar 

  • Pfleiderer W, Schirmeister H, Reiner T, Pfister M, Charubala R (1987) New protecting groups in nucleoside and nucleotide chemistry. In:Bruzik KS, Stec WJ (eds) Biophosphates and their analogues — synthesis, structure metabolism and activity. Elsevier, Amsterdam, pp 133–142.

    Google Scholar 

  • Reed MW, Adams AD, Nelson JS, Meyer RB Jr (1991) Acridine and cholesterol derivatised solid supports for improved synthesis of 3′-modified oligonucleotides. Bioconjugate Chem 2:217–225.

    CAS  Google Scholar 

  • Reese CB, Zard L (1981) Some observations relating to the oximate ion promoted unblocking oligonucleotide aryl esters. Nucleic Acids Res 9:4611–4626.

    PubMed  CAS  Google Scholar 

  • Revel M (1979) Molecular mechanisms involved in the antiviral effects of interferon. In:Gresser J (ed) Interferon 1. Academic Press, New York, pp 101–163.

    Google Scholar 

  • Roberts WK, Clemens MJ, Kerr IM (1976) Interferon-induced inhibition of protein synthesis in L-cell extracts:an ATP-dependent step in the activation of and inhibition by double stranded RNA. Proc Natl Acad Sci USA 73:3136–3140.

    PubMed  CAS  Google Scholar 

  • Ruf K, Pfleiderer W (1991) Synthesis and properties of 5.6-dichlorobenzimidazole 2′-5′-and 3′-5′-nucleotide dimers and trimers. Carbohydr Res 216:421–439.

    PubMed  CAS  Google Scholar 

  • Ruf K, Herdewijn P, Pfleiderer W (1987) Synthesis of 2′-5′-adenylate trimers containing 3′-modified β-D xylofuranosyl adenine derivatives at the 2′-end. Nucleosides Nucleotides 6:527–528.

    CAS  Google Scholar 

  • Saison-Behmoras T, Tocque B, Rey I, Chassignol M, Thuong NT, Helene C (1991) Short modified antisense oligonucleotides directed against Haras point mutation induce selective cleavage of the mRNA and inhibit t 24 cells proliferation. EMBO J 10:1111–1118.

    Google Scholar 

  • Sawai H, Ohno M (1981) Synthesis of oligoinosinates with 2′-5′ internucleotide linkage in aqueous solution using Pb2+ion. Bull Chem Soc Jpn 54:2759–2762.

    CAS  Google Scholar 

  • Sawai H, Shibata T, Ohno M (1979) Synthesis of oligonucleotide inhibitor of protein synthesis:pppA2′p5′ A. Tetrahedron Lett 20:4573–4576.

    Google Scholar 

  • Sawai H, Imai J, Lesiak K, Johnston MI, Torrence PF (1983) Cordycepin analogues of 2–5 A and its derivatives. Chemical synthesis, and biological activity. J Biol Chem 258:1671–1677.

    PubMed  CAS  Google Scholar 

  • Schmidt A, Zilberstein A, Shulman L, Federman P, Berissi H, Revel M (1978) Interferon action: isolation of nuclease F, a translation inhibitor activated by interferon-induced (2′-5′) oligoisoadenylate. FEBS Lett 95:257–264.

    PubMed  CAS  Google Scholar 

  • Schmidt A, Chernajovsky Y, Shulman L, Federman P, Berissi H, Revel M (1979) Interferon-induced phosphodiesterase degrading (2–5) oligoisoadenylate and the CCA terminus of tRNA. Proc Natl Acad Sci USA 76:4788–4792.

    PubMed  CAS  Google Scholar 

  • Schröder HC, Suhadolnik RJ, Pfleiderer W, Charubala R, Müller WEG (1992) Mini review:(2′-5′) oligoadenylate and intracellular immunity against retrovirus infection. Int J Biochem 24:55–63.

    PubMed  Google Scholar 

  • Seek F, Ott J, Hißmann E (1984) (2′-5′) and (B′-S′J-Tubercidylyl-tubercidine-Synthese über Phos-phit-Triester und Untersuchungen zur Sekundörstruktur. Liebigs Ann Chem 208:692–707.

    Google Scholar 

  • Sehgal PB, Pfeffer LM, Tamm I (1983) In:Came PG, Caliguiri LA (eds) Chemotherapy of viral infection. Springer, Berlin Heidelberg New York, pp 305–311.

    Google Scholar 

  • Sen GC (1984) Biochemical pathways in interferon — action. Pharmacol Ther 24:235–257.

    PubMed  CAS  Google Scholar 

  • Sharma OP, Engels J, Jäger A, Crea R, Van Boom JH, Goswami BB (1983) 3′-O-methylated analogs of 2–5 A as inhibitors of virus replication. FEBS Lett 158:298–300.

    PubMed  CAS  Google Scholar 

  • Shea RG, Marsters J, Bischofberger N (1990) Synthesis, hybridization properties and antiviral activity of lipid-oligodeoxynucleotide conjugates. Nucleic Acids Res 18:3777–3783.

    PubMed  CAS  Google Scholar 

  • Sobol RW, Wilson SH, Charubala R, Pfleiderer W, Suhadolnik RJ (1990) 2′-5′-Oligoadenylate mediated inhibition of HIV-1 reverse transcriptase. J Interferon Res 10:66.

    Google Scholar 

  • Sobol RW, Charubala R, Schirmeister H, Kon N, Pfleiderer W, Suhadolnik RJ (1993a) Synthesis and characterisation of phosphorothioate/phosphodiester analogues of 2–5 oligoadenylate: functional characterisation of the individual internucleotide linkage with respect to RNase L activation. J Biol Chem (submitted).

    Google Scholar 

  • Sobol RW, Fisher WL, Reichenbfich NL, Kumar A, Beard WA, Wilson SH, Charubala R, Pfleiderer W, Suhadolnik RJ (1993b) HIV-1 reverse transcriptase inhibition by 2′-5′-oligoadenylates. Biochemistry (in press).

    Google Scholar 

  • Sobol RW, Charubala R, Pfleiderer W, Suhadolnik RJ (1993c) Chemical Synthesis and biological characterisation of Phosphorothioate analogs of 2′,5′-3′-deoxyadenylate trimer. Nucleic Acids Res 21:2437–2443.

    PubMed  CAS  Google Scholar 

  • Srinivasan AR, Olson WK (1986) Conformational studies of (2′-5′) polynucleotides: theoretical computation of energy, base morphology, helical structure and duplex formation. Nucleic Acids Res 14:5461–5479.

    PubMed  CAS  Google Scholar 

  • Stewart WE II (1979) The interferon system. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Suhadolnik RJ, Doetsch PW, Devash Y, Henderson EE, Charubala R, Pfleiderer W (1983) 2′-5′-Adenylate and cordycepin trimer cores: metabolioc stability and evidence for antimitogenesis without 5′-rephosphorylation. Nucleosides Nucleotides 2:351–366.

    CAS  Google Scholar 

  • Suhadolnik RJ, Lee C, Kariko K, Li SW (1987) Phosphorothioate analogues of 2′,5′-oligoadenylate. Enzymatic synthesis, properties and biological activities of 2′.5′-phosphorothioates from aden-osine 5′-O-(2-thiotriphosphate) and adenosine-5′-O-(3-thiotriphosphate). Biochemistry 26:7143–7149.

    PubMed  CAS  Google Scholar 

  • Suhadolnik RJ, Sobol RW, Li SW, Reichenbach NL, Haley BE (1988) 2-and 8-Azido photoaffinity probes: enzymatic synthesis, characterisation and biological properties of 2-and 8-azido photo-probes of 2–5A and photolabelling of 2–5A binding proteins. Biochemistry 27:8840–8846.

    PubMed  CAS  Google Scholar 

  • Suhadolnik RJ, Lebleu B, Pfleiderer W, Charubala R, Montefiori DC, Mitchell WM, Sobol RW, Li SW, Kariko K, Reichenbach NL (1989) Phosphorothioate analogs of 2′-5′-A: activation/inhibition of RNase L and inhibition of HIV-1 reverse transcriptase. Nucleosides Nucleotides 8:987–990.

    Google Scholar 

  • Takaku H, Ueda S (1983) A convenient method for the synthesis of adenylyl-(2′-5′)-adenylyl-(2′-5′)-adenosine using 3′-O-benzoyladenosine derivatives. Bull Chem Soc Jpn 56:1424–1427.

    CAS  Google Scholar 

  • Torrence PF (1982) Molecular foundations of interferon action. Mol Aspects Med 5:129–171.

    CAS  Google Scholar 

  • Torrence PF, Imai J, Lesiak K, Jamoulle JC, Sawai H (1984) Oligonucleotide structural parameters that influence binding of 5′-O triphosphoryladenylyl-(2′-5′)-adenylyl-(2′-5′)-adenosine to the 5′-O-triphosphoryladenylyl-2′-5)-adenylyl-(2′-5)-adenosine dependent endoribonuclease: chain elongation, phosphorylation state and heterocyclic base. J Med Chem 27:726–733.

    PubMed  CAS  Google Scholar 

  • Torrence PF, Brozda D, Alster D, Charubala R, Pfleiderer W (1988) Only one 3′-hydroxyl group of ppp5′A2′p5′A2′p5′A2′p5′A (2–5 A) is required for activation of the 2–5 A-dependent endo-nuclease. J Biol Chem 263:1131–1139.

    PubMed  CAS  Google Scholar 

  • Visser GM, Tromp M, Westrenen JV, Schipperus O, Van Boom JH (1986) Synthesis of some modified 2′-5′-linked oligoriboadenylates of 2–5 A core. Recueil 105:85–91.

    CAS  Google Scholar 

  • Vroom ED, Fidder A, Saris CP, Van der Marel G, Van Boom JH (1987) Preparation of individual diastereomers of adenylyl-(2′-5′)-P-thioadenylyl-(2′-5′)-adenosine and their 5′phosphorylated derivatives. Nucleic Acids Res 23:9933–2020.

    Google Scholar 

  • Will DW, Brown T (1992) Attachment of vitamin E derivatives to oligonucleotides during solid phase synthesis. Tetrahedron Lett 33:2729–2732.

    CAS  Google Scholar 

  • Williams BRG, Kerr IM, Gilbert CS, White CN, Ball LA (1978) Synthesis and breakdown of pppA2′p5′A2′p5′A and transient inhibition of protein synthesis in extracts from interferon-treated and control cells. Eur J Biochem 96:35–41S.

    Google Scholar 

  • Willis DH, Pfleiderer W, Charubala R, Suhadolnik RJ (1983) The cordycepin analog of 2′-5′-adenylate trimer core: inhibition of swarm chondrosarcoma. Fed Proc 42:443.

    Google Scholar 

  • Yoshida S, Takaku T (1986) Synthesis and properties of 2′.5′-adenylate trimers bearing 2′-terminal 8-bromo-8-hydroxyadenosine. Chem Pharm Bull 34:2456–2461.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Charubala, R., Pfleiderer, W. (1994). Chemical Synthesis of 2′,5′-0ligoadenylate Analogues. In: Müller, W.E.G., Schröder, H.C. (eds) Biological Response Modifiers — Interferons, Double-Stranded RNA and 2′,5′-Oligoadenylates. Progress in Molecular and Subcellular Biology, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78549-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78549-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78551-1

  • Online ISBN: 978-3-642-78549-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics