Advertisement

Mechanismen der Mustererkennung im Sehsystem

  • Herbert J. Reitböck
Conference paper
Part of the Informatik aktuell book series (INFORMAT)

Zusammenfassung

Das Sehsystem des Menschen ist bei Aufgaben der Objekterkennung und Szenenanalyse von einer Leistungsfähigkeit und Universalität, wie sie mit technischen Mustererkennungssystemen gegenwärtig nicht realisierbar ist. Viele Aspekte der Informationsverarbeitung im Sehsystem sind noch unbekannt; es wurden jedoch wichtige neurophysiologische und neuroanatomische Entdeckungen gemacht, die Hinweise auf grundlegende Funktionsprinzipien der visuellen Informationsverarbeitung geben, und es wurden Hypothesen und Modelle entwickelt, die diese Ergebnisse in einen größeren Zusammenhang einbinden.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [Altmann, Reitboeck 84]
    Altmann, J., Reitboeck, H.J.: A fast correlation method for scale-and translation-invariant pattern recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-6, 1984, 46–57.CrossRefGoogle Scholar
  2. [Arndt, Dicke, Erb, Reitboeck 91]
    Arndt, M., Dicke, P., Erb, M., Reitboeck, H.J.:A multilayered,physiology-oriented neuronal network model that combines feature linking with associative memory. In: N. Elsner, H. Penzlin (eds.): Synapse, Transmission, Modulation, Stuttgart, New York: Thieme, 1991, 587.Google Scholar
  3. [Arndt, Dicke, Erb, Eckhorn,Reitboeck 92]
    Arndt, M., Dicke, P., Erb, M., Eckhorn, R., Reitboeck, H.J.: Two-layered physiology-oriented neuronal network models that combine feature linking via synchronization with a classical associative memory. In: Taylor, J.G., Caianiello, E.R., Cotterill, R.M.J., Clark, J.W. (eds.): Neural Network Dynamics, London, Berlin, New York: Springer, 1992, 140–154.Google Scholar
  4. [Braitenberg, Schüz 91]
    Braitenberg, V., Schiiz, A.: Anatomy of the cortex. Statistics and geometry. Stuttgart, New York: Springer, 1991.Google Scholar
  5. [Dinse, Krüger, Best 90]
    Dinse, H.R., Krüger, K., Best, J.: A temporal structure of cortical information processing. Concepts in Neuroscience, Volume 1, 1990, 199–238.Google Scholar
  6. [Eckhorn, Bauer, Jordan, Brosch, Kruse, Munk, Reitboeck 88]
    Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munk, M., Reitboeck, H.J.: A mechanism of feature linking in the visual cortex?’ Multiple electrode and correlation analyses in the cat. Biol. Cybernetics 60, 1988, 121–130.CrossRefGoogle Scholar
  7. [Eckhorn, Reitboeck 88]
    Eckhorn, R., Reitboeck, H.J.: Assessment of cooperative firing in groups of neurons: Special concepts for multi-unit recordings from the visual system. In: E. Basar (ed.): Springer Series in Brain Dynamics, Berlin: Springer, 1988, 219–227.Google Scholar
  8. [Eckhorn, Reitboeck, Arndt, Dicke 89]
    Eckhorn, R., Reitboeck, H.J., Arndt, M., Dicke, P: Feature linking via stimulus-evoked oscillations: Experimental results from cat visual cortex and functional implications from a network model. Confer. Abstr. Intern. Conf. on Neural Networks, Washington DC, 1989, 723–730.Google Scholar
  9. [Eckhorn, Reitboeck, Arndt, Dicke 89]
    Eckhorn, R., Reitboeck, H.J., Arndt, M., Dicke, P.: A neural network for feature linking via synchronous neural activity. In: R.M.J. Cotterill (ed.): Models of Brain Function, Cambridge: University Press, 1989, 255–272.Google Scholar
  10. [Eckhorn, Bauer, Reitboeck 89]
    Eckhorn, R., Bauer, R., Reitboeck, H.J.: Discontinuities in visual cortex and possible functional implications: Relating cortical structure and funciton with multi-electrode/correlation techniques. In: E. Basar, Th. Bullock (eds.): Springer Series in Brain Dynamics, Stuttgart, New York: Springer, 1989, 267–278.Google Scholar
  11. [Eckhorn, Reitboeck, Arndt, Dicke, Kruse 90]
    Eckhorn, R., Reitboeck, H.J., Arndt, M. Dicke, P., Kruse, W.: Feature linking across cortical maps via synchronization. Proceedings Intern. Conference on Parallel Processing in Neural Systems and Computers, Amsterdam: North-Holland, 1990, 101–104.Google Scholar
  12. [Eckhorn, Reitboeck 90]
    Eckhorn, R., Reitboeck, H.J.: Stimulus-specific synchronizations in cat visual cortex and their possible role in visual pattern recognition. In: H. Haken (ed.): Synergetics of Cognition, Berlin, Heidelberg, New York, Tokyo: Springer, 1990, 99–111.Google Scholar
  13. [Eckhorn, Dicke, Kruse, Reitboeck 91]
    Eckhorn, R., Dicke, P., Kruse, W., Reitboeck, H.J.: Stimulus-related facilitation and synchronization among visual cortical areas: Experiments and Models. In: H.G. Schuster (ed.): Nonlinear Dynamics and Neuronal Networks, Weinheim, New York, Basel: VCH-Verlag, 1991, 57–76.Google Scholar
  14. [Eckhorn, Dicke, Arndt, Reitboeck 92]
    Eckhorn, R., Dicke, P., Arndt, M., Reitboeck, H.J.: Flexible linking of visual features b stimulus-related synchronizations of model neurons. In: Th. Bullock, E. Basar (eds.): Induced Rhythms in the Brain. Series in Brain Dynamics, Boston, Basel, Berlin: Birkhäuser, 1992, 397–416.Google Scholar
  15. [Freeman, Skarda 85]
    Freeman, W.J., Skarda, C.A.: Spatial EEG patterns, nonlinear dynamics and perception: the Neo-sherringtonian view. Brain Research (Rev 10), 1985, 147–175.Google Scholar
  16. [Hirsch, Gilbert 91]
    Hirsch, J.A., Gilbert, C.D.: Synaptic physiology of horizontal con- nections in the cat’s visual cortex. Journal Neuroscience, 11(6), 1991, 1800–1809.Google Scholar
  17. [Hopfield 82]
    Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, 79, 1982, 2554–2558.MathSciNetCrossRefGoogle Scholar
  18. [Gray, Singer 87]
    Gray, C.M., Singer, W.: Stimulus-dependent neuronal oscillations in the cat visual cortex area 17. Neuroscience (Suppl.) 22, 1987, 1301P.Google Scholar
  19. [Mountcastle, Reitboeck, Poggio, Steinmetz 91]
    Mountcastle, V.B., Reitboeck, H.J., Poggio, G.F., Steinmetz, M.A.: Adaptation of the Reitboeck method of multiple microelectrode recording to the neocortex of the waking monkey. Journal of Neuroscience Methods, 36, 1991, 77–84.CrossRefGoogle Scholar
  20. [Rausch, Erb, Arndt, Reitboeck 93]
    Rausch, M., Erb, M., Arndt, M., Reitboeck, H.J.: A dynamic associative memory: Synchronization and segmentation for pattern discrimination and completion. In: N. Elsner, M. Heisenberg (eds.): Gene-Brain-Behaviour, Stuttgart, New York: Thieme, 1993, 872.Google Scholar
  21. [Reitboeck 83a]
    Reitboeck, H.J.: Fiber microelectrodes for electrophysiological recordings. J. Neuroscience Methods 8, 1983, 249–262CrossRefGoogle Scholar
  22. [Reitboeck 83b]
    Reitboeck, H.J.: A 19-channel matrix drive with individually controllable fiber micro electrodes for neurophysiological applications. IEEE Transactions on Systems, Man and Cybernetics, SMC-13, 1983, 676–683.Google Scholar
  23. [Reitboeck 83c]
    Reitboeck, H.J.: A multi-electrode matrix for studies of temporal signal correlations within neural assemblies. In: E. Basar (ed.): Synergetics of the Brain, Stuttgart, New York: Springer, 1983, 174–182.Google Scholar
  24. [Reitboeck, Altmann 84]
    Reitboeck, H.J., Altmann, J.: A model for size-and rotation-invariant pattern processing in the visual system. Biol. Cybernetics 51, 1984, 113–121.zbMATHCrossRefGoogle Scholar
  25. [Reitboeck, Eckhorn,Pabst 87]
    Reitboeck, H.J., Eckhorn, R., Pabst, M.: A model of figure/ground separation based on correlated neural activity in the visual system. In: H. Haken (ed.): Computational Systems - Natural and Artificial, Stuttgart, New York: 1987, 44–54.Google Scholar
  26. [Reitboeck, Eckhorn, Pabst 88]
    Reitboeck, H.J., Eckhorn, R., Pabst, M.: Texture description in the time domain. In: R.M.J. Cotterill (ed.): Computer Simulation in Brain Science, Cambrigde: University Press, 1988, 479–494.Google Scholar
  27. [Reitboeck 89]
    Reitboeck, H.J.: Neural mechanisms of pattern recognition. In: J. Lund (ed.): Sensory Processing in the Mammalian Brain: Neural Substrates and Experimental Strategies, New York: Oxford Univ. Press, 1989, 307–330.Google Scholar
  28. [Reitboeck, Eckhorn,Arndt, Dicke 90]
    Reitboeck, H.J., Eckhorn, R., Arndt, M., Dicke, P.: A model of feature linking via correlated neural activity. In: H. Haken (ed.): Synergetics of Cognition, Berlin, Heidelberg, New York: Springer, 1990, 112–125.Google Scholar
  29. [Reitboeck, Eckhorn, Arndt, Dicke, Stoecker 91]
    Reitboeck, H.J., Eckhorn, R., Arndt, M., Dicke, P., Stoecker, M.: Neural network models for the simulation of basic visual information processing tasks. In: I. Dvorak, A.V. Holden (eds.): Proceedings in Nonlinear Science, Mathematical Approaches to Brain Functioning Diagnostics, Manchester, New York: University Press, 1991, 257–268.Google Scholar
  30. [Reitboeck, Stoecker, Hahn 93]
    Reitboeck, H.J., Stoecker, M., Hahn, Ch.: Object separation in dynamic neural networks. Proceedings of the IEEE ICNN, San Francisco, USA, 1993.Google Scholar
  31. [Reitboeck, Stoecker 93]
    Reitboeck, H.J., Stoecker, M.: A model for scene segmentation and invariant object recognition in the visual system. Proceedings of the 11th International Biophysics Conference, Budapest, Hungary, 1993.Google Scholar
  32. [Rose, Dobson 85]
    Rose, D., Dobson, V.G. (eds.): Models of the Visual Cortex. Chichester, New York: John Wiley & Sons, 1985.Google Scholar
  33. [Rumelhart, Hinton, Williams 86]
    Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagation errors. Nature 33, 533–536.Google Scholar
  34. [Rumelhart, McClelland 87]
    Rumelhart, D.E., McClelland, J.L.: Parallel Distributed Processing. Vol. 1 and 2, Cambridge, Massachusetts, London: MIP press, 1987.Google Scholar
  35. [Stoecker, Eckhorn,Reitboeck 91]
    Stoecker, M., Eckhorn, R., Reitboeck, H.J.: Oscillatory synchronizations in neural networks: Responses to stimuli that induce the perception of subjective contours in humans. In: N. Elsner, H. Penzlin (eds.): Synapse, Transmission, Modulation, Stuttgart, New York: Thieme, 1991, 216.Google Scholar
  36. [Stoecker 92]
    Stoecker, M.: Objektdefinition durch Synchronisation: Ein neuronales Netz zur visuellen Mustererkennung. In: TAT 92, Abstraktband des 4. bundesweiten Transputer-Anwender-Treffens (TAT), Aachen, 1992, 221–222.Google Scholar
  37. [Stoecker, Reitboeck 93]
    Stoecker, M., Reitboeck, H.J.: Scene segmentation and invariant object recognition in a dynamic neural network. In: N. Elsner, M. Heisenberg (eds.): Gene-Brain-Behaviour, Stuttgart, New York: Thieme, 1993, 868.Google Scholar
  38. [Werner, Reitboeck, Eckhorn 93]
    Werner, G., Reitboeck, H.J., Eckhorn, R.: Construction of concepts by the nervous system: From neurons to cognition. Behavioral Science, Volume 38, 1993, 114–123.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Herbert J. Reitböck
    • 1
  1. 1.A.G. Angewandte Physik und BiophysikPhilipps-UniversitätMarburgDeutschland

Personalised recommendations