Advertisement

Computational Psychophysics of Stereoscopic Depth Perceptions

  • Hanspeter A. Mallot
Conference paper
Part of the Informatik aktuell book series (INFORMAT)

Abstract

Stereoscopic depth perception is based on the differences between the images of the two eyes which, in turn, are due to the differences of viewpoint (parallax) or specular reflectance. The mechanisms of stereoscopic depth perception have been studied intensively in Psychophysics, Neurophysiology, and, most recently, in Computer Vision. For review see Poggio & Poggio (1984), Arditi (1986), Dhond & Aggarwal (1989), Regan, Frisby, Poggio, Schor & Tyler (1990) and Blake & Wilson (1991). Most of the more recent work in all of these approaches is strongly influenced by the seminal book by Bela Julesz (1971) which treats stereo vision as a problem of information processing. Three major question are:
  1. 1.

    What stage of (uniocular) image processing feeds into the binocular comparison mechanism? Julesz showed that simple local image features rather that more complex object descriptions suffice, i.e., that stereopsis is a process of early vision (see also Julesz 1991).

     
  2. 2.

    What exactly is the binocular comparison operation? Especially in images of points in various depth positions, correspondences between image features depicting the same 3D object feature have to be found. Julesz proposed a cooperative, neural-network type mechanism for solving the correspondence problem.

     
  3. 3.

    What is the result of stereo processing? Julesz distinguishes two types of stereopsis: global stereopsis does not establish detailed correspondences and leads to the perception of planes or smooth surfaces (sometimes even subjective surfaces) in depth. Feature-based or local stereopsis results in a sparse disparity map with one disparity value assigned to each pair of corresponding image features.

     

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arditi, A. Binocular vision. In K. R. Boff, L. Kaufmann, and J. P. Thomas, editors, Handbook of Perception and Human Performance, Vol. 1: Sensory Processes and Perception. John Wiley Si Sons, New York, 1986.Google Scholar
  2. Arndt, P. A., H. A. Mallot, and H. H. Bülthoff. Stereovision without localized image-features, in preparation.Google Scholar
  3. Blake, A. and H. H. Bülthoff. Does the brain know the physics of specular reflection? Nature,343:165–168, 1990.CrossRefGoogle Scholar
  4. Blake, R. and H. R. Wilson. Neural models of stereoscopic vision. Trends in Neuro­sciences, 14:445–452, 1991.Google Scholar
  5. Bohrer, S., H. H. Bülthoff, and H. A. Mallot. Motion detection by correlation and voting. In R. Eckmiller, G. Hartmann, and G. Hauske, editors, Parallel Processing in Neural Systems and Computers, pages 125–128, Amsterdam, 1990. North-Holland.Google Scholar
  6. Biilthoff, H. H. and H. A. Mallot. Integration of depth modules: Stereo and shading. Journal of the Optical Society of America A, 5:1749–1758, 1988.CrossRefGoogle Scholar
  7. Collewijn, H. and C. J. Erkelens. Binocular eye movements and the perception of depth. In E. Kowler, editor, Eyemovements and Their Role in Visual and Cognitive Pro­cesses. Elsevier Science Publishers, 1990.Google Scholar
  8. Cormack, L. K., S. B. Stevenson, and C. M. Schor. Interocular correlation, luminance contrast and cyclopean processing. Vision Research, 31:2195–2207, 1991.CrossRefGoogle Scholar
  9. Dartsch, S., H. A. Mallot, and P. A. Arndt. Human stereopsis does not always proceed coarse-to-fine. In N. Elsner and M. Heisenberg, editors, Gene - Brain - Behaviour (Proc. 21 th Göttingen Neurobiol. Conf.), page 26, Stuttgart, 1993. G. Thieme Verlag.Google Scholar
  10. Dhond, U. R. and J. K. Aggarwal. Structure from stereo - a review. IEEE Transactions on Systems,Man, and Cybernetics, 19:1489–1510, 1989.MathSciNetGoogle Scholar
  11. Erben, A., H. A. Mallot, and P. A. Arndt. How do vergence eye-movements select 3D regions of interest in complex visual scenes? In N. Elsner and M. Heisenberg, editors, Gene - Brain - Behaviour (Proc. 21th Göttingen Neurobiol. Conf.), page 27, Stuttgart, 1993. G. Thieme Verlag.Google Scholar
  12. Georgopoulos, A. P., J. F. Kalasak, R. Caminiti, and J. T. Massey. On the relation of the direction of twodimensional arm movements and cell discharge in primate motor cortex. The Journal of Neuroscience,2:1527–1537, 1982.Google Scholar
  13. Hassenstein, B. and W. Reichardt. Reihenfolgen-Vorzeichenauswertung bei der Bewe­gungsperzeption des Rüsselkäfers Chlorophanus. Zeitschrift für Naturforschung,Teil B, 11:513–524, 1956.Google Scholar
  14. Jordan III, J. R., W. S. Geisler, and A. C. Bovik. Color as a source of information in the stereo correspondence process. Vision Research, 30:1955–1970, 1990.CrossRefGoogle Scholar
  15. Julesz, B. Foundations of Cyclopean Perception. Chicago University Press, Chicago and London, 1971.Google Scholar
  16. Julesz, B. Early vision and focal attention. Reviews of Modern Physics, 63:735–772, 1991.CrossRefGoogle Scholar
  17. Julesz, B. In the last minutes of evolution of life, stereoscopic depth perception captured the input layer to the visual cortex to break camouflage. Perception,17:A3, 1988.Google Scholar
  18. Krol, J. D. and W. A. van de Grind. The double-nail illusion: Experiments on binocular vision with nails, needles, and pins. Perception, 9:651–669, 1980.CrossRefGoogle Scholar
  19. Legge, G. E. and Y. Gu. Stereopsis and contrast. Vision Research,29:989–1004, 1989.CrossRefGoogle Scholar
  20. Lehky, S. R. and T. J. Sejnowski. Neural model of stereoacuity and depth interpolation based on a distributed representation of stereo disparity. The Journal of Neuroscience,10:2281–2299, 1990.Google Scholar
  21. Mallot, H. A. and H. Bideau. Vergence eye movements influences the assignment of stereo correspondences. Vision Research,30:1521–1523, 1990.CrossRefGoogle Scholar
  22. Mallot, H. A., H. H. Bülthoff, J. J. Little, and S. Bohrer. Inverse perspective mapping simplifies optical flow computation and obstacle detection. Biological Cybernetics,64:177–185, 1991.zbMATHCrossRefGoogle Scholar
  23. Mallot, H. A., W. von Seelen, and F. Giannakopoulos. Neural mapping and space-variant image processing. Neural Networks, 3:245–263, 1990.CrossRefGoogle Scholar
  24. Manteuffel, G. and G. Roth. A model of the saccadic sensorimotor system of salamanders. Biological Cybernetics, 68:431–440, 1993.CrossRefGoogle Scholar
  25. Marr, D. and T. Poggio. Cooperative computation of stereo disparity. Science,194:283–287, 1976.CrossRefGoogle Scholar
  26. Marr, D. and T. Poggio. A computational theory of human stereo vision. Proceedings of the Royal Society (London) B, 204:301–328, 1979.CrossRefGoogle Scholar
  27. McKee, S. P. and G. J. Mitchison. The role of retinal correspondance in stereoscopic matching. Vision Research, 28:1001–1012, 1988.CrossRefGoogle Scholar
  28. Poggio, G. F. Processing of stereoscopic information in primate visual cortex. In G. M. Edelman, W. E. Gall, and W. M. Cowan, editors, Dynamic Aspects of Neocortical Function, pages 613–635. John Wiley & Sons, 1984.Google Scholar
  29. Poggio, G. F. and T. Poggio. The analysis of stereopsis. Annual Review of Neuroscience,7:379–412, 1984.CrossRefGoogle Scholar
  30. Regan, D., J. P. Frisby, G. F. Poggio, C. M. Schor, and C. W. Tyler. The perception of stereodepth and stereo-motion: Cortical mechanisms. In L. Spillman and J. S. Werner, editors, Visual Perception. The Neurophysiological Foundations. Academic Press, San Diego etc., 1990.Google Scholar
  31. Richards, W. A., Anomalous stereoscopic depth perception. Journal of the Optical Society of America,61:410–414, 1971.CrossRefGoogle Scholar
  32. Weinshall, D. Seeing “ghost” planes in stereo vision. Vision Research, 31:1731–1748, 1991.CrossRefGoogle Scholar
  33. Westheimer, G. and D. E. Mitchell. The sensory stimulus for disjunctive eye movements. Vision Research,9:749–755, 1969.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Hanspeter A. Mallot
    • 1
  1. 1.Max-Planck-Institut für biologische KybernetikTübingenGermany

Personalised recommendations