Comparison of Regulatory Features Among Primate Lentiviruses

  • K. T. Jeang
  • A. Gatignol
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 188)


It has been more than a decade since the description of primate lentiviruses as the etiological agents for immunodeficiencies (Barre—Sinoussi et al. 1983; Gallo et al. 1984; Levy et al. 1984; Clavel et al. 1986). Since that time, besides the human immunodeficiency viruses (HIV-1 and HIV-2), molecular isolates of simian immunodeficiency viruses (SIVs; Desrosiers 1990), as well as related viruses in cattle, cats, sheep, and goats, have been obtained. For HIVs and SIVs, extensive nucleotide sequencing information is available; the sequences from 30 or more individual HIV isolates and 20 or more SIV isolates are available in one recent compilation (Myers et al. 1992a). Based on this information, the phylogenetic relationship between (and among) HIVs and SIVs has been proposed (reviewed in Desrosiers 1990; Myers et al. 1992b). From this perspective, we can operationally categorize the primate lentiviruses into four groups, represented by (a) HIV-1 and SIVcpz; (b) SIVsmm, SIVmac, and HIV-2; (c) SIVagm; and (d) SIVmnd (Desrosiers 1990; Myers et al. 1992b).


Human Immunodeficiency Virus Acquire Immune Deficiency Syndrome Simian Immunodeficiency Virus Deficiency Virus Type Iymphotropic Virus Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adachi A, Gendelman HE, Koenig S, Folks T, Willey RL, Rabson A, Martin MA (1986) Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol 59: 284–291PubMedGoogle Scholar
  2. Adams C, Workman J (1993) Nucleosome displacement in transcription. Cell 72: 305–308PubMedCrossRefGoogle Scholar
  3. Ancelle R, Bredberg U, Chiodi F, Bottiger B, Fenyo E, Norrby E, Biberfeld G (1987) Long incubation period for HIV-2 infection. Lancet 1: 688–689PubMedCrossRefGoogle Scholar
  4. Anderson MG, Clements JE (1992) Two strains of SIVmac show differential transactivation mediated by sequences in the promoter. Virology 191: 559–568PubMedCrossRefGoogle Scholar
  5. Arrigo S, Chen ISY (1991) Rev is necessary for translation but not cytoplasmic accumulation of HIV-1 vif, vpr, and env/vpu RNAs. Genes Dev 5: 808–819PubMedCrossRefGoogle Scholar
  6. Arya SK (1990) Human immunodeficiency virus type-2 gene expression: two enhancers and their activation by T-cell activators. New Biol 2: 57–65PubMedGoogle Scholar
  7. Arya SK, Guo C, Josephs SF, Wong-Staal F (1985) Trans-activator gene of human T- lymphotropic virus type III (HTLV-III). Science 229: 69–73PubMedCrossRefGoogle Scholar
  8. Barre-Sinoussi F, Chermann JC, Rey F, Nugeyre MT, Chamaret S, Gruest J, Dauguet C, Axler-Blin C, Vezinet-Brun E, Rouzious C, Rozenbaum W, Montagnier L (1983) Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220: 868–871PubMedCrossRefGoogle Scholar
  9. Bartel DP, Zapp ML, Green MR, Szostak JW (1991) HIV-1 Rev regulation involves recognition of non-Watson-Crick base pairs in viral RNA. Cell 67: 529–536PubMedCrossRefGoogle Scholar
  10. Bellas R, Hopkins N, Li Y (1993) The NF-kB bindng site is necessary for efficient replication of simian immunodeficiency virus of macaques in primary macrophages but not in T cells in vitro. J Virol 67: 2908–2913PubMedGoogle Scholar
  11. Berkhout B (1992) Structural features in TAR RNA of human and simian immunodeficiency viruses: a phylogenetic analysis. Nucleic Acids Res 20: 27–31PubMedCrossRefGoogle Scholar
  12. Berkhout B, Jeang K-T (1989) Trans Activation of human immunodeficiency virus type 1 is sequence specific for both the single-stranded bulge and loop of the trans-acting-responsive hairpin: a quantitative analysis. J Virol 63: 5501–5504PubMedGoogle Scholar
  13. Berkhout B, Jeang K-T (1991) A detailed mutational analysis of TAR RNA; critical spacing between the bulge and loop recognition domains. Nucleic Acids Res 19: 6169–6176PubMedCrossRefGoogle Scholar
  14. Berkhout B, Jeang K-T (1992) Functional roles for TATA/promoter and enhancers in basal and Tat-induced expression of the HIV-1 LTR. J Virol 66: 139–149PubMedGoogle Scholar
  15. Berkhout B, Silverman RH, Jeang K-T (1989) Tat trans-activates the human immunodeficiency virus through a nascent RNA target. Cell 59: 273–282PubMedCrossRefGoogle Scholar
  16. Berkhout B, Gatignol A, Rabson AB, Jeang K-T (1990a) TAR-independent activation of the HIV-1 LTR: evidence that Tat requires specific regions of the promoter. Cell 62: 757–767PubMedCrossRefGoogle Scholar
  17. Berkhout B, Gatignol A, Silver J, Jeang KT (1990b) Efficient trans-activation by the HIV-2 Tat protein requires a duplicated TAR RNA structure. Nucleic Acids Res 18: 1839–1846PubMedCrossRefGoogle Scholar
  18. Brake DA, Debouk C, Biesecker G (1990) Identification of an Arg-Gly-Asp (RGD) cell adhesion site in human immunodeficiency virus type 1 transactivation protein, tat. J Cell Biol 111:1275–1281PubMedCrossRefGoogle Scholar
  19. Bucher P, Trifonov E (1986) Compilation and analysis of eukaryotic POL II promoter sequences. Nucleic Acids Res 14: 10013–10017CrossRefGoogle Scholar
  20. Bukrinsky M, Stanwick T, Dempsey M, Stevenson M (1991) Quiescent T lymphocytes as an inducible virus reservoir in HIV-1 infection. Science 254: 423–427PubMedCrossRefGoogle Scholar
  21. Calnan BJ, BiancalanaS, Hudson D, Frankel AD, (1991) Analysis of arginine-rich peptides from the HIV Tat protein reveals unusual features of RNA-protein recognition. Genes Dev 5: 201–210PubMedCrossRefGoogle Scholar
  22. Chang Y-N, Jeang K-T (1992) The basic RNA-binding domain of HIV-2 Tat contributes to preferential trans-activation of a TAR2-containing LTR. Nucleic Acids Res 20: 5465–5472PubMedCrossRefGoogle Scholar
  23. Chang D, Sharp P (1989) Regulation by HIV Rev depends upon recognition of splice sites. Cell 59: 789–795PubMedCrossRefGoogle Scholar
  24. Cheng-Mayer C, Shioda T, Levy J (1991) Host range, replicative, and cytopathic properties of human immunodeficiency virus type 1 are determined by very few amino acid changes in tat and gp 120. J Virol 65: 6931–6941PubMedGoogle Scholar
  25. Chang L-J, McNulty E, Martin M (1993) Human immunodeficiency viruses containing heterologous enhancer/promoters are replication competent and exhibit different lymphocyte tropisms. J Virol 67: 743–752PubMedGoogle Scholar
  26. Cheng S-M, Blume M, Lee S-G, Hung P, Hirsch V, Johnson P (1990) The simian immunodeficiency virus (SIV) rev gene regulates env expression. J Med Primatol 19: 167–176PubMedGoogle Scholar
  27. Churcher M, Lamont C, Hamy F, Dingwall C, Green SM, Lowe AD, Butler JG, Gait MJ, Kam J (1993) High affinity binding of TAR RNA by the human immunodeficiency virus type-1 tat protein requires base pairs in the RNA stem and amino acid residues flanking the basic region. J Mol Biol 230: 90–110PubMedCrossRefGoogle Scholar
  28. Clavel F, Guetard D, Brun-Vezinet F, Chamaret S, Rey M, Santos-Ferreira M, Laurent A, Dauguet C, Katlama C, Rouzioux C, Klatzmann D, Champalimaud J, Montagnier L (1986) Isolation of a new human retrovirus from West African patients with AIDS. Science 233: 343–346PubMedCrossRefGoogle Scholar
  29. Clavel F, Mansinho K, Chamaret S, Guetard D, Favier V, Nina J, Santos-Ferreira MO, Champalimaud J-L, Montagnier L (1987) Human immunodeficiency virus type 2 infection associated with AIDS in West Africa. N Engl J Med 316: 1180–1185PubMedCrossRefGoogle Scholar
  30. Cochrane A, Chen C, Rosen C (1990a) Specific interaction of the human immunodeficiency virus Rev protein with a structured region in env mRNA. Proc Natl Acad Sci USA 87: 1198–1202PubMedCrossRefGoogle Scholar
  31. Cochrane A, Perkins A, Rosen C (1990b) Identification of sequences important in the nucleolar localization of human immunodeficiency virus Rev: relevance of nucleolar localization to function. J Virol 64: 881–885PubMedGoogle Scholar
  32. Cohen E, Dehni G, Sodroski J, Haseltine W (1990) Human immunodeficiency virus vpr product is a virion-associated regulatory protein. J Virol 64: 3097–3099PubMedGoogle Scholar
  33. Constantoulakis P, Campbell M, Felber JB, Nasioulas G, Afonina E, Pavlakis G, (1993) Inhibition of Rev-mediated HIV-1 expression by an RNA binding protein encoded by the interferon-inducible 9–27 gene. Science 259: 1314–1318PubMedCrossRefGoogle Scholar
  34. Cooney AJ, Tsai SY, O’Malley B, Tsai MJ (1991) Chicken ovalbumin upstream promoter transcription factor binds to a negative regulatory region in the human immunodeficiency virus type 1 long terminal repeat. J Virol 65: 2853–2860PubMedGoogle Scholar
  35. Cordingley MG, LaFemina RL, Callahan PL, Condra JH, Sardana VV, Graham DJ, Nguyen TM, LeGrow K, Gotlib L, Schlabach AJ, Colonno RJ (1990) Sequence-specific interaction of Tat protein and Tat peptides with the transactivation responsive sequence element of human immunodeficiency virus type 1 in vitro. Proc Natl Acad Sci USA 87: 8985–8989PubMedCrossRefGoogle Scholar
  36. Crabtree G. (1989) Contingent genetic regulatory events in T-lymphocyte activation. Science 243: 355–361PubMedCrossRefGoogle Scholar
  37. Cullen BR (1990) The HIV-1 Tat protein: an RNA sequence-specific processivity factor? Cell 63: 655–657PubMedCrossRefGoogle Scholar
  38. Cullen BR, Garrett ED (1992) A comparison of regulatory features in primate lentiviruses. AIDS Res Hum Retroviruses 8:387–393PubMedCrossRefGoogle Scholar
  39. Daefler S, Klotmena M, Wong-Staal F (1990) Trans-activating Rev protein of the human immunodeficiency virus 1 interacts directly and specifically with its target RNA. Proc Natl Acad Sci USA 87: 4571–4575PubMedCrossRefGoogle Scholar
  40. D’Agostino D, Felber B, Harrison J, Pavlakis G (1992) The Rev protein of human immunodeficiency virus type 1 promotes polysomal association and translation of gag/pol and vpu/env mRNAs. Mol Cell Biol 12:1375–1386Google Scholar
  41. Daly T, Cook K, Gray G, Malone T, Rusche J. (1989) Specific binding of HIV-1 recombinant Rev protein to the Rev-responsive element in vitro. Nature 343: 816–819CrossRefGoogle Scholar
  42. Daniel M, Kirchhoff F, Czajak S, Sehgal P, Desrosiers RC, (1992) Protective effects of a live attenuated SIV vaccine with a deletion in the nef gene. Science 258: 1938–1941PubMedCrossRefGoogle Scholar
  43. Dayton AI, Sodroski JG, Rosen CA, Goh WC, Haseltine WA (1986) The transactivator gene of the human T Cell lymphotropic virus type III is required for replication. Cell 44: 941–947PubMedCrossRefGoogle Scholar
  44. Dayton E, Powell D, Dayton A (1989) Functional analysis of CAR, the target sequence for the Rev protein of HIV-1. Science 246: 1625–1629Google Scholar
  45. Dayton E, Konings D, Lim S, Hsu R, Butini L, Pantaleo, G, Dayton A (1993) The RRE of human immunodeficiency virus type 1 contributes to cell-type-specific viral tropism. J Virol 67:287–2878Google Scholar
  46. Derse D, Carvalho M, Carroll R, Peterlin BM (1991) A minimal lentivirus Tat. J Virol 65: 7012–7015PubMedGoogle Scholar
  47. Desrosiers, RC (1990) The simian immunodeficiency viruses. Annu Rev Immunol 8: 557–578PubMedCrossRefGoogle Scholar
  48. Dewhurst S, Embretson JE, Anderson DC, Mullins Jl, Fultz P (1990) Sequence analysis and acute pathogenicity of molecularly cloned SIVsmm-pbj14. Nature 345: 636–640PubMedCrossRefGoogle Scholar
  49. Dillon P, Nelbock P, Perkins A, Rosen C (1990) Function of the human immunodeficiency virus types 1 and 2 Rev proteins is dependent on their ability to interact with a structured region present in env gene mRNA. J Virol 64: 4428–4437PubMedGoogle Scholar
  50. Dillon P, Nelbock P, Perkins A, Rosen C (1991) Structural and functional analysis of the human immunodeficiency virus type 2 Rev protein. J Virol 65: 445–449Google Scholar
  51. Dingwall C, Ernberg I, Gait MJ, Green SM, Heaphy S, Karn J, Lowe AD, Singh M, Skinner MA, Vallerio R (1989) Human immunodeficiency virus 1 tat protein binds trans-activation responsive region (TAR) RNA in vitro. Proc Natl Acad Sci USA 86: 6925–6929PubMedCrossRefGoogle Scholar
  52. Dufoort G, Courouce AM, Ancelle-Park R, Bletry 0 (1988) No clinical signs 14 year after HIV-2 transmission via bolld transfection. Lancet 2: 510PubMedCrossRefGoogle Scholar
  53. Dynan WS (1989) Modularity in promoters and enhancers. Cell 58: 1–4PubMedCrossRefGoogle Scholar
  54. Elangovan B, Subramanian T, Chinnadurai G (1992) Functional comparison of the basic domains of the Tat proteins of human immunodeficiency virus types 1 and 2 in trans activation. J Virol 66: 2031–2036PubMedGoogle Scholar
  55. Emerman M, Guyader M, Montagnier L, Baltimore D, Muesing MA (1987) The specificity of the human immunodeficiency virus type 2 trans-activator is different from that of human immunodeficiency virus type 1. EMBO J 6: 3755–3760PubMedGoogle Scholar
  56. Felber B, Hadzopoulou-Cladras M, Cladaras C, Copeland T, Pavlakis G (1989) Rev protein of human immunodeficiency virus type 1 affects the stability and transport of the viral mRNA. Proc Natl Acad Sci USA 86: 1495–1499PubMedCrossRefGoogle Scholar
  57. Felsenfeld G (1992) Chromatin as an essential part of the transcriptional mechanism. Nature 355:219–224PubMedCrossRefGoogle Scholar
  58. Feng S, Holland EC (1988) HIV-1 tat trans-activation requires the loop sequence within TAR. Nature 334: 165–167PubMedCrossRefGoogle Scholar
  59. Fenrick R, Malim M, Hauber J, Le SY, Maizel J, Cullen B (1989) Functional analysis of the tat trans-activator of human immunodeficiency virus type II. J Virol 63: 5005–5012Google Scholar
  60. Fisher AG, Feinberg SF, Josephs SF, Harper ME, Marselle LM, Reyes G, Gonda MA, Aldovini A, Debouk C, Gallo RC, Wong-Staal F (1986) The trans-activator gene of HTLV-III is essential for virus replication. Nature 320: 367–371PubMedCrossRefGoogle Scholar
  61. Frankel A, Pabo C (1988) Cellular uptake of the Tat protein from human immunodeficiency virus. Cell 55:1189–1193PubMedCrossRefGoogle Scholar
  62. Franza BR, Josephs SF, Gilman M, Ryan W, Clarkson B (1987) Characterization of cellular proteins recognizing the HIV enhancer using a microscale DNA-affinity precipitation assay. Nature 330: 391–395PubMedCrossRefGoogle Scholar
  63. Fukasawa M, Miura T, Hasegawa A, Morikawa S, Tsujimoto H, Miki K, Kitamura T, Hayami M (1988) Sequence of simian immunodeficiency virus from African green monkey, a new member of HIV/SIV group. Nature 333: 457–461PubMedCrossRefGoogle Scholar
  64. Gallo R, Salahuddin S, Popovic M, Shearere G, Kaplan M, Haynes B, Palker T, Redfield R, Oleske J, Safai B, White G, Foster P, Markham P (1984) Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS. Science 224: 500–503PubMedCrossRefGoogle Scholar
  65. Garcia JA, Wu FK, Mitsuyasu R, Gaynor RB (1987) Interactions of cellular proteins involved in the transcriptional regulation of the human immunodeficiency virus. EMBO J 6: 3761–3770PubMedGoogle Scholar
  66. Gatignol A, Buckler-White A, Berkhout B, Jeang K-T (1991) Characterization of a human TAR RNA-binding protein that activates the HIV-1 LTR. Science 251: 1597–1600PubMedCrossRefGoogle Scholar
  67. Gatignol A, Buckler C, Jeang K-T (1993) Relatedness of an RNA-binding motif in human immunodeficiency virus type 1 TAR RNA-binding protein TRBP to human P1/dsl kinase and Drosophila staufen Mol Cell Biol 13: 2193–2202PubMedGoogle Scholar
  68. Gendelman HE, Phelps W, Feigenbaum L, Ostrove JM, Adachi A, Howley PM, Khoury G, Ginsberg HS, Martin M (1986) Trans-activation of the human immunodeficiency virus long terminal repeat sequence by DNA viruses. Proc Natl Acad Sci USA 83: 9759–9763PubMedCrossRefGoogle Scholar
  69. Guyader M, Emerman M, Sonigo P, Clavel F, Gluckman J-C, Alizon M (1987) Genome organization and transactivation of the human immuno-deficiency virus type 2. Nature 326: 662–669PubMedCrossRefGoogle Scholar
  70. Harrich D, Garcia J, Wu F, Mitsuyasu R, Gonzalez J, Gaynor RB (1989) Role of Sp1 -binding domains in in vivo transcriptional regulation of the human immunodeficiency virus type 1 long terminal repeat. J Virol 63: 2585–2591PubMedGoogle Scholar
  71. Hattori N, Michaels F, Fargnoli K, Marcon L, Gallo R, Franchini G (1990) The human immunodeficiency virus type 2 vpr gene is essential for productive infection of human macrophages. Proc Natl Acad Sci USA 87: 8080–8084PubMedCrossRefGoogle Scholar
  72. Hauber J, Cullen BR (1988) Mutational analysis of the trans-activation-responsive region of the human immunodeficiency virus type I long terminal repeat. J Virol 62: 673–679PubMedGoogle Scholar
  73. Heaphy S, Dingwall C, Erngerg I, Gait M, Green S, Kam J, Lowe A, Singh M, Skinner M (1990) HIV-1 regulator of virion expression (Rev) protein binds to an RNA stem-loop structure located within the Rev response element region. Cell 60: 685–693PubMedCrossRefGoogle Scholar
  74. Heaphy S, Finch J, Gait M, Kam J, Singh M (1991) Human immunodeficiency virus type 1 regulator of virion expression rev, forms nucleoprotein filaments after binding to a purine rich “bubble” located within the rev-responsive region of viral mRNAs. Proc Natl Acad Sci USA 88: 7366–7370PubMedCrossRefGoogle Scholar
  75. Holland S, Ahmad N, Maitra R, Wingfield P, Venkatassan S (1990) Human immunodeficiency virus Rev protein recognizes a target sequence in rev-responsive element RNA within the context of RNA secondary structure. J Virol 64: 5966–5975PubMedGoogle Scholar
  76. Hope T, Huang X, McDonald D, Parslow T (1990a) Steroid-receptor fusion of the human immunodeficiency virus type 1 Rev transactivator: mapping cryptic functions of the arginine-rich motif. Proc natl Acad Sci USA 88: 7787–7791CrossRefGoogle Scholar
  77. Hope T, McDonald D, Huang X, Low J, Parslow T (1990b) Mutational analysis of the human immunodeficiency virus type 1 Rev transactivator: essential residues near the amino terminus. J Virol 64: 5360–5366PubMedGoogle Scholar
  78. Hope T, Bond BL, McDonald D, Klein N, Parslow T (1991) Effector domains of human immunodeficiency virus type 1 Rev and human T-cell leukemia virus type I Rex are functionally interchangeable and share an essential peptide motif. J Virol 65: 6001–6007PubMedGoogle Scholar
  79. Huet T, Cheynier R, meyerhans A, Roelants G, Wain-Hobson S (1990) Genetic organization of a chimpanzee lentivirus related to HIV-1. Nature 345: 356–359PubMedCrossRefGoogle Scholar
  80. Jaeger JA, Turner DH, Zuker M (1989) Predicting optimal and suboptimal secondary structure for RNA. Methods Enzymol 183: 281–306CrossRefGoogle Scholar
  81. Jakobovits A, Smith DH, jakobovits EB, Capon DJ (1988) A discrete element 3’ of human immunodeficiency virus (HIV-1) and HIV-2 mRNA initiation sites mediates transcriptional activation by an HIV trans-activator. Mol Cell Biol 8: 2555–2561PubMedGoogle Scholar
  82. Jeang K-T, Berkhout B (1992) Kinetics of HIV-1 long terminal repeat transactivation. Use of intragenic ribozyme to assess rate-limiting steps. J Biol Chem 267: 17891–17899PubMedGoogle Scholar
  83. Jeang K-T, Chang YN, Berkhout B, Hammarskjold M-L, Rekosh D (1991) Regulation of HIV expression: mechanisms of action of Tat and Rev. AIDS 5: S3-S14CrossRefGoogle Scholar
  84. Johnson PF, McKnight SL (1989) Eucaryotic transcriptional regulatory proteins. Annu Rev Biochem 58: 799–839PubMedCrossRefGoogle Scholar
  85. Jones KA (1989) HIV trans-activation and transcription control mechanisms. New Biol 1: 127–135PubMedGoogle Scholar
  86. Jones KA, Kadonaga JT, Luciw PA, Tjian R (1986) Activation of the AIDS retrovirus promoter by the cellular transcription factor, Spl. Science 232: 755–759PubMedCrossRefGoogle Scholar
  87. Jones KA, Luciw PA, Duchange N (1988) Sturctural arrangements of transcription control domains within the 5’-untranslated leader regions of the HIV-1 and HIV-2 promoters. Genes Dev 2:1101–1114PubMedCrossRefGoogle Scholar
  88. Kamine J, Subramanian T, Chinnadurai G (1991) Sp1-dependent activation of a synthetic promoter by human immunodeficiency virus type I Tat protein. Proc Natl Acad Sci USA 88: 8510–8514PubMedCrossRefGoogle Scholar
  89. Kato H, Hirikoshi H, Roeder R (1991) Repression of HIV-1 transcription by a cellular protein. Science 251: 1476–1479PubMedCrossRefGoogle Scholar
  90. Kawakami K, Schneidereit C, Roeder RG (1988) Identification and purification of a human immunoglobulin enhancer-binding protein (NF-KB) that activates transcription from a human immunodeficiency virus type 1 promoter in vitro. Proc Natl Acad Sci USA 82: 488–492Google Scholar
  91. Kestler H, Ringler D, Mori K, Panicali D, Desrosiers R (1991) Importance of the nef gene for maintenance of high virus load and for development of AIDS. Cell 65: 651–662PubMedCrossRefGoogle Scholar
  92. Kim J, Gonzalez-Scarano F, Zeichner S, Alwine J (1993) Replication of type 1 human immunodeficiency viruses containing linker substitution mutations in the -201 to -130 region of the long terminal repeat. J Virol 67: 1658–1662PubMedGoogle Scholar
  93. Kjems J, Brown M, Chang DD, Sharp PA (1991 a). Structural analysis of the interaction between the human immunodeficiency virus rev protein and the rev response element. Proc Natl Acad Sci USA 88: 683–687PubMedCrossRefGoogle Scholar
  94. Kjems J, Frankel A, Sharp PA (1991 b) Specific regulation of mRNA in vitro by a peptide from HIV-1. Rev Cell 67: 169–178Google Scholar
  95. Koken SE, van Wamel J, Goudsmit J, Berkhout B, Geelen JL (1992) Natural variants of the HIV-1 long terminal repeat: analysis of promoters with duplicated DNA regulatory motifs. Virology 191: 968–972PubMedCrossRefGoogle Scholar
  96. Kuppuswamy M, Subramanian T, Srinivasan A, Chinnadurai G (1989) Multiple functional domains of Tat, the transactivator of HIV-1, defined by mutational analysis. Nucleic Acids Res 17: 3551–3561PubMedCrossRefGoogle Scholar
  97. Lang S, Weeger M, Stahl-Hennig C, Coulibaly C, Hunsmann G, Muller J, Muller-Hermelink H, Fuchs D, Wächter H, Daniel M, Desrosiers R, Fleckenstein B (1993) Importance of vpr for infection of rhesus monkeys with simian immunodeficiency virus. J Virol 67: 902–912PubMedGoogle Scholar
  98. Laspia MF, Rice AP, Matthews MB (1989) HIV-1 Tat protein increases transcriptional initiation and stabilizes elongation. Cell 59: 283–292PubMedCrossRefGoogle Scholar
  99. Le SY, Malim M, Cullen B, Maizel JV (1990) A highly conserved RNA folding region coincident with the Rev-response element of primate immunodeficiency viruses. Nucleic Acids Res 18: 1613–1623PubMedCrossRefGoogle Scholar
  100. Leiden J, Wang C, Petryniak B, Markovitz D, Nabel G, Thompson C (1992) A novel Ets-related transcription factor, Elf-1, binds to human immunodeficiency virus type 2 regulatory elements that are required for inducible trans-activation in T cells. J Virol 66: 5890–5897PubMedGoogle Scholar
  101. Lenardo M, Baltimore D (1989) NF-/cB; a pleiotropic mediator of inducible and tissue-specificgene control. Cell 58: 227–229PubMedCrossRefGoogle Scholar
  102. Leonard J, Parrott C, Buckler-White A, Turner W, Ross E, Martin M, Rabson A (1989) The NF-KB binding sites in the HIV-1 long terminal repeats are not required for virus infectivity. J Virol 63: 4919–4924PubMedGoogle Scholar
  103. Levy J, Hoffman A, Kramer S, Landis JA, Shimabukuro J, Oshiro L (1984) Isolation of lymphocytopathic retroviruses from San Francisco patients with AIDS. Science 225: 840–842PubMedCrossRefGoogle Scholar
  104. Lewis N, Williams J, Rekosh D, Hammarskjold M-L(1990) Identification of a cis-acting element in human immunodeficiency virus type 2 (HIV-2) that is responsive to the HIV-1 rev and human T-cell leukemia virus types I and II rex proteins. J Virol 64: 1690–1697PubMedGoogle Scholar
  105. Lu X, Heimer J, Rekosh D, Hammarskjold M-L (1990) U1 small nuclear RNA plays a direct role in the formation of a rev-regulated human immunodeficiency virus env mRNA that remains unspliced. Proc Natl Acad Sci USA 87: 7598–7602PubMedCrossRefGoogle Scholar
  106. Lu Y, Touzhan N, Stenzel M, Dorfman T, Sodroski J, Haseltine W (1990) Identification of cis-acting repressive sequences within the negative regulatory element of human immunodeficiency virus type 1. J Virol 64: 5226–5229PubMedGoogle Scholar
  107. Malim MH, Cullen BR (1991) HIV-1 structural gene expression requires the binding of multiple Rev monomers to the viral RRE: implications for HIV-1 latency. Cell: 241–248Google Scholar
  108. Malim MH, Bohnlein S, Fenrick R, Le S-Y, Maizel J, Cullen BR (1989a) Functional comparison of the Rev trans-activators encoded by different primate immunodeficiency virus species. Proc Natl Acad Sci USA 86: 8222–8226PubMedCrossRefGoogle Scholar
  109. Malim MH, Bohnlein S, Hauber J, Cullen BR (1989b) Functional dissection of the HIV-1 Rev trans-activator-derivation of a trans-dominant repressor of Rev function. Cell 58: 205–214PubMedCrossRefGoogle Scholar
  110. Malim MH, Hauber J, Le S-Y, Maizel J, Cullen BR (1989c) The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature 338: 254–257PubMedCrossRefGoogle Scholar
  111. Malim MH, Tiley LS, McCarn DF, Rusche JR, Hauber J, Cullen BR (1990) HIV-1 Structural gene expression requires binding of the Rev transactivator to its RNA target sequence. Cell 60: 675–683PubMedCrossRefGoogle Scholar
  112. Malim MH, McCarn DF, Tiley L, Cullen BR, (1991) Mutational definition of the human immunodeficiency virus type 1 Rev activation domain. J Virol 65: 4248–4254PubMedGoogle Scholar
  113. Markovitz D, Hannibal M, Perez V, Gauntt C, Folks T, Nabel G (1990) Differential regulation of human immunodeficiency viruses (HIVs): a specific regulatory element in HIV-2 responds to stimulation of the T-cell antigen receptor. Proc Natl Acad Sci USA 87: 9098–9102PubMedCrossRefGoogle Scholar
  114. Markovitz D, Smith M, Hilfinger J, Hannibal M, Petryniak B, Nabel G (1992) Activation of the human immunodeficiency virus type 2 enhancer is dependent on purine box and kB regulatory elements. J Virol 66: 5479–5484PubMedGoogle Scholar
  115. Martin MA (1990) Fast-acting slow virus. Nature 345: 572–573PubMedCrossRefGoogle Scholar
  116. McDonald D, HopeT, ParslowT (1992) Posttranscriptional regulation by the human immunodeficiency virus type 1 Rev and human T-cell leukemia virus type I Rex protein through a heterologous RNA binding site. J Virol 66: 7232–7238PubMedGoogle Scholar
  117. McNally MT, Gotarek R, Beemon K (1991) Characterization of Rous sarcoma virus intronic sequences that negatively regulate splicing. Virology 185: 99–108PubMedCrossRefGoogle Scholar
  118. Mosca J, bednarik D, Raj N, Rosen C, Sodroski J, Haseltine W, Hayward G, Pitha P (1987) Activation of human immunodeficiency virus by herpesvirus infection: identification of a region within the long terminal repeat that responds to a trans-acting factor encoded by herpes simplex virus 1. Proc Natl Acad Sci USA 84: 7408–7412PubMedCrossRefGoogle Scholar
  119. Muesing MA, Smith DH, Capon DJ (1987) Regulation of mRNA accumulation by a human immunodeficiency virus trans-activator protein. Cell 48: 691–701PubMedCrossRefGoogle Scholar
  120. Myers G, Berzofsky J, Korber B, Smith R, Pavlakis GN (1992a) Human retroviruses and AIDS. A compilation and analysis of nucleic acid and amino acid sequences. Los Alamos Laboratories, Los AlamosGoogle Scholar
  121. Myers G, Maclnnes K, Korber B (1992b) The emergence of simian/human immunodeficiency viruses. AIDS Res Hum Retroviruses 8: 373–386PubMedCrossRefGoogle Scholar
  122. Nabel G, Baltimore D (1987) An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature 326: 711–713PubMedCrossRefGoogle Scholar
  123. Nelson J, Reynolds-Kholer C, Oldstone M, Wiley CA (1988) HIV and HCMV coinfect brain cells in patients with AIDS. Virology 165: 286–290PubMedCrossRefGoogle Scholar
  124. Olsen H, Cochrane A, Dillon P, Nalin C, Rosen C (1990) Interaction of the human immunodeficiency virus type 1 Rev protein with a structured region in env mRNA is dependent on multimer formation mediated through a basic stretch of amino acids. Genes Dev 4: 1357–1364PubMedCrossRefGoogle Scholar
  125. Pang S, Koyanagi Y, Miles S, Wiley C, Vinters HV, Chen ISY (1990) High levels of unintegrated HIV-1 DNA in brain tissue of AIDS dementia patients. Nature: 85–89Google Scholar
  126. Parrot C, Seidner T, Duh E, Leonard J, Theodore TS, Buckler-White A, Martin MA, Rabson AB (1991) Variable role of the long terminal repeat Sp1 -binding sites in human immunodeficiency virus replication in T lymphocytes. J Virol 65: 1414–1419Google Scholar
  127. Pavlakis GN, Felber BK (1990) Regulation of expression of human immunodeficiency virus. New Biol 2: 20–31PubMedGoogle Scholar
  128. Rhim H, Rice AP (1993) TAR RNA binding properties and relative transactivation activities of human immunodeficiency virus type 1 and type 2 Tat proteins. J Virol 67: 1110–1121PubMedGoogle Scholar
  129. Rosen CA, Sodroski JG, Haseltine WA (1985) The location of cis-acting regulatory sequences in the human T cell lymphotropic virus type III (HTLV-III/LAV) long terminal repeat. Cell 41:813–823PubMedCrossRefGoogle Scholar
  130. Ross E, Buckler-White A, Rabson AB, Englund G, Martin MA (1991) Contribution of NF-KB and Spl binding motifs to the replicative capacity of human immunodeficiency virus type 1: distinct patterns of viral growth are determined by T-cell types. J Virol 65: 4350–4358PubMedGoogle Scholar
  131. Roy S, Parkin NT, Rosen C, Itovitch J, Sonenberg N (1990) Structural requirements for trans-activation of human immunodeficiency virus type 1 long terminal repeat-directed gene expression by Tat: importance of base pairing, loop sequence, and bulges in the Tatresponsive sequence. J Virol 64: 1402–1406PubMedGoogle Scholar
  132. Sakai H, Shibata R, Miura T, Hayami M, Ogawa K, Kiyomasu T, Ishimoto A, and Adachi A (1990a) Complementation of the rev gene mutation among human and simian lentiviruses. J Virol 64: 2202–2207PubMedGoogle Scholar
  133. Sakai H, Siomi H, Shida H, Shibata R, Kiyomusu T, Adachi A (1990b) Functional comparison of transactivation by human retrovirus rev and rex genes. J Virol 64: 5833–5839PubMedGoogle Scholar
  134. Sakai H, Shibata R, Sakuragi J, Kiyomasu T, Kawamura M, Hayami M, Ishimota A, Adachi A (1991) Compatibility of rev gene activity in the four groups of primate lentiviruses. Virology 184: 513–520PubMedCrossRefGoogle Scholar
  135. Sakai H, Sakuragi J, Sayuri S, Shibata R, Adachi A (1992) Functional analysis of biologically distinct genetic variants of simian immunodeficiency virus isolated from a mandrill. Virology 189: 161–166PubMedCrossRefGoogle Scholar
  136. Sakai H, Kawamura M, Sakuragi J, Sakuragi S, Shibata R, Ishimoto A, Ono N, Ueda S, Adachi A (1993) Integration is essential for efficient gene expression of human immunodeficiency virus type 1. J Virol 67: 1169–1174PubMedGoogle Scholar
  137. Sakuragi J, Sakai H, Sakuragi S, Shibata R, Wain-Hobson S, Hayami M, Adachi A (1992) Functional classification of simian immunodeficiency virus isolates from a chimpanzee by transactivators. Virology 189: 354–358PubMedCrossRefGoogle Scholar
  138. Savageau MA (1991) Reconstructionist molecular biology. New Biol 3: 190–197PubMedGoogle Scholar
  139. Schwartz S, Felber B, Benko D, Fenyo E, Pavlakis G (1990) Cloning and functional analysis of multiply spliced mRNA species of human immunodeficiency virus type 1. J Virol 64: 5448–5456PubMedGoogle Scholar
  140. Selby MJ, Peterlin BM (1990) Trans-activation by HIV-1 Tat via a heterologous RNA binding protein. Cell 62: 769–776PubMedCrossRefGoogle Scholar
  141. Seigel LJ, Ratner L, Josephs SF, Derse D, Feinberg MB, Reyes GA, O’Brien, SJ, Wong-Staal F (1986) Transactivation induced by human T-lymphotropic virus type III (HTLV-III) maps to a viral sequence encoding 58 amino acids and lacks tissue specificity. Virology 148: 226–231PubMedCrossRefGoogle Scholar
  142. Sharp PA, Marciniak RA (1989) HIV TAR: an RNA enhancer? Cell 59: 229–230PubMedCrossRefGoogle Scholar
  143. Shaw J-P, Utz PJ, Durand DB, Toole J J, Emmel E, CrabtreeG (1988) Identification of a putative regulatory of early T cell activation genes. Science 241: 202–205PubMedCrossRefGoogle Scholar
  144. Sheline C, Milocco L, Jones KA (1991) Two distinct nuclear transcription factors recognize loop and bulge residues of the HIV-1 TAR RNA hairpin. Genes Dev 5: 2508–2520PubMedCrossRefGoogle Scholar
  145. Shibata R, Miura T, Hayami M, Ogawa K, Sakai H, Kiyomasu T, Ishimoto A, Adachi A (1990a) Mutational analysis of the human immunodeficiency virus type 2 (HIV-2) genomein relation to HIV-1 and simian immunodeficiency virus SIVagm. J Virol 64: 742–747PubMedGoogle Scholar
  146. Shibata R, Miura T, Hayami M, Sakai H, Ogawa K, Kiyomasu T, Ishimotao A, Adachi A (1990b) Construction and characterization of an infectious DNA clone and of mutants of simian immunodeficiency virus isolated from the African green monkey. J Virol 64: 307–312PubMedGoogle Scholar
  147. Shibata R, Sakai H, Kiyomusu T, Ishimoto A, Hayami M, Adachi A (1990c) Generation and characterization of infectious chimeric clones between human immunodeficiency virus type 1 and simian immunodeficiency virus from an African green monkey. J Virol 64: 5861–5868PubMedGoogle Scholar
  148. Siekevitz M, Josephs S, Dukovich M, Peffer N, Wong-Staal F, Greene W (1987) Activation of the HIV-1 LTR by T cell mitogens and the trans-activator protein of HTLV-I. Science 238: 1575–1579PubMedCrossRefGoogle Scholar
  149. Sodroski JG, Patarca R, Rosen CA, Wong-Staal F, Haseltine WA (1985) Location of the trans-activating region on the genome of human T-cell lymphotropic virus type III. Science 229: 74–77PubMedCrossRefGoogle Scholar
  150. Sodroski J, Goh W, Rosen C, Dayton A, Terwilliger E, Haseltine W (1986) A second post-transcriptional trans-activator gene required for HTLV-III replication. Nature 321: 74–77CrossRefGoogle Scholar
  151. Southgate CD, Green MR (1991) The HIV-1 tat protein activates transcription from an upstream DNA-binding site: implicatons for tat function. Genes Dev 5: 2496–2507PubMedCrossRefGoogle Scholar
  152. Southgate C, Zapp ML Green MR (1990) Activation of transcription by HIV-1 Tat protein tethered to nascent RNA through another protein. Nature 345: 640–642PubMedCrossRefGoogle Scholar
  153. Stolfus M, Fogarty S (1989) Multiple regions in the Rous sarcoma virus src gene intron acts in eis to affect the accumulation of unspliced RNA. J Virol 63: 1669–1676Google Scholar
  154. Terwilliger E, Burghoff R, Sia R, Sodroski J, Haseltine W, Rosen C (1988) The art gene product of human immunodeficiency virus is required for replication. J Virol 62: 655–658PubMedGoogle Scholar
  155. Tong-Starksen SE, Welsh TM, Peterlin BM (1990) Differences in transcriptional enhancers of HIV-1 and HIV-2. Response to T cell activation signals. J Immunol 145: 4348–4354PubMedGoogle Scholar
  156. Tsujimoto H, Hasegawa A, Maki N, Fukasawa M, Miura T, Speidel S, Cooper RW, Moriyama EN, Gojobori T, Hayami M (1989) Sequence of a novel simian immunodeficiency virus from a wild-caught African mandrill. Nature 341: 539–541PubMedCrossRefGoogle Scholar
  157. Vaishnav YN, Wong-Staal F (1991) The biochemistry of AIDS. Annu Rev Biochem 60:577–630PubMedCrossRefGoogle Scholar
  158. Vaishnav YN, Vaishnav M, Wong-Staal F (1991) Identification and characterization of a nuclear factor that specifically binds to the Rev response element (RRE) of human immunodeficiency virus type 1 (HIV-1). New Biol 3: 142–150PubMedGoogle Scholar
  159. Venkatesh L, Mohammed S, Chinnadurai G (1990) Functional domains of the HIV-1 rev gene required for trans-regulation and subcellular localization. Virology 176: 39–47PubMedCrossRefGoogle Scholar
  160. Viglianti GA, Mullins Jl (1988) Functional comparison of transactivation by simian immunodeficiency virus from rhesus macaques and human immunodeficiency virus type 1. J Virol 62: 4523–4532PubMedGoogle Scholar
  161. Viglianti GA, Sharma P, Mullins Jl (1990) Simian immunodeficiency virus displays complex patterns of RNA splicing. J Virol 64: 4207–4216PubMedGoogle Scholar
  162. Waterman M, Fischer W, Jones KA (1991) Athymus-specific member of the HMG protein family regulates the human T cell receptor Ca enhancer. Genes Dev 5: 656–669PubMedCrossRefGoogle Scholar
  163. Weeks KM, Crothers DM (1991) RNA recognition by Tat-derivied peptides: interaction in the major groove? Cell 66: 577–588PubMedCrossRefGoogle Scholar
  164. Weeks KM, Ampe C, Schultz SC, Steitz TA, Crothers DM (1990) Fragments of the HIV-1 Tat protein specifically bind TAR RNA. Science 249: 1281–1285PubMedCrossRefGoogle Scholar
  165. Winandy S, Renjifo B, Li Y, Hopkins N (1992) Nuclear factors that bind two regions important to transcriptional activity of the simian immunodeficiency virus long terminal repeat. J Virol 66: 5216–5223PubMedGoogle Scholar
  166. Wu FK, Garcia JA, Harrich D, Gaynor RA (1988) Purification of the human immunodeficiency virus type 1 enhancer and TAR binding proteins EBP-1 and UBP-1. EMBO J 7:2117–2129PubMedGoogle Scholar
  167. Wu FK, Garcia J, Sigman D, Gaynor R (1991) tat regulates the binding of the human immunodeficiency virus trans-activating region RNA loop-binding protein TRP-185. Genes Dev 5: 2128–2140PubMedCrossRefGoogle Scholar
  168. Yu X-F, Matsuda M, Essex M, Lee T-H (1990) Open reading frame vpr of simian immunodeficiency virus encodes a virion-associated protein. J Virol 64: 5688–5693PubMedGoogle Scholar
  169. Zack J, Cann A, Lugo J, Chen ISY (1988) HIV-1 production from infected peripheral blood T cells after HTLV-I induced mitogenic stimulation. Science 240: 1026–1029PubMedCrossRefGoogle Scholar
  170. Zack J, Arrigo S, Weitsman S, Go A, Haislip A, Chen IS (1990) HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile latent viral structure. Cell 61: 213–222PubMedCrossRefGoogle Scholar
  171. Zapp M, Green MR (1989) Sequence-specific RNA binding by the HIV-1 Rev protein. Nature 342:714–716PubMedCrossRefGoogle Scholar
  172. Zapp M, Hope T, Parslow T, Green MR (1991) Oligomerization and RNA binding domains of the type 1 human immunodeficiency virus Rev protein: a dual function for an arginine-rich binding motif. Proc Natl Acad Sci USA 88: 7734–7738PubMedCrossRefGoogle Scholar
  173. Zimmermann K, Dobrovnik M, Ballaun C, Bevec D, Hauber J, Bohnlein E (1991) trans- Activation of the HIV-1 LTR by the HIV-1 Tat and HTLV-I Tax proteins is mediated by different cis-acting sequences. Virology 182: 874–878PubMedCrossRefGoogle Scholar
  174. Zuker M (1989) On finding all suboptimal foldings of an RNA molecule. Science 244: 48–52PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • K. T. Jeang
    • 1
  • A. Gatignol
    • 1
  1. 1.Laboratory of Molecular MicrobiologyNational Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUSA

Personalised recommendations