Skip to main content

Comparison of Regulatory Features Among Primate Lentiviruses

  • Chapter
Book cover Simian Immunodeficiency Virus

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 188))

Abstract

It has been more than a decade since the description of primate lentiviruses as the etiological agents for immunodeficiencies (Barre—Sinoussi et al. 1983; Gallo et al. 1984; Levy et al. 1984; Clavel et al. 1986). Since that time, besides the human immunodeficiency viruses (HIV-1 and HIV-2), molecular isolates of simian immunodeficiency viruses (SIVs; Desrosiers 1990), as well as related viruses in cattle, cats, sheep, and goats, have been obtained. For HIVs and SIVs, extensive nucleotide sequencing information is available; the sequences from 30 or more individual HIV isolates and 20 or more SIV isolates are available in one recent compilation (Myers et al. 1992a). Based on this information, the phylogenetic relationship between (and among) HIVs and SIVs has been proposed (reviewed in Desrosiers 1990; Myers et al. 1992b). From this perspective, we can operationally categorize the primate lentiviruses into four groups, represented by (a) HIV-1 and SIVcpz; (b) SIVsmm, SIVmac, and HIV-2; (c) SIVagm; and (d) SIVmnd (Desrosiers 1990; Myers et al. 1992b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi A, Gendelman HE, Koenig S, Folks T, Willey RL, Rabson A, Martin MA (1986) Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol 59: 284–291

    PubMed  CAS  Google Scholar 

  • Adams C, Workman J (1993) Nucleosome displacement in transcription. Cell 72: 305–308

    Article  PubMed  CAS  Google Scholar 

  • Ancelle R, Bredberg U, Chiodi F, Bottiger B, Fenyo E, Norrby E, Biberfeld G (1987) Long incubation period for HIV-2 infection. Lancet 1: 688–689

    Article  PubMed  CAS  Google Scholar 

  • Anderson MG, Clements JE (1992) Two strains of SIVmac show differential transactivation mediated by sequences in the promoter. Virology 191: 559–568

    Article  PubMed  CAS  Google Scholar 

  • Arrigo S, Chen ISY (1991) Rev is necessary for translation but not cytoplasmic accumulation of HIV-1 vif, vpr, and env/vpu RNAs. Genes Dev 5: 808–819

    Article  PubMed  CAS  Google Scholar 

  • Arya SK (1990) Human immunodeficiency virus type-2 gene expression: two enhancers and their activation by T-cell activators. New Biol 2: 57–65

    PubMed  CAS  Google Scholar 

  • Arya SK, Guo C, Josephs SF, Wong-Staal F (1985) Trans-activator gene of human T- lymphotropic virus type III (HTLV-III). Science 229: 69–73

    Article  PubMed  CAS  Google Scholar 

  • Barre-Sinoussi F, Chermann JC, Rey F, Nugeyre MT, Chamaret S, Gruest J, Dauguet C, Axler-Blin C, Vezinet-Brun E, Rouzious C, Rozenbaum W, Montagnier L (1983) Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220: 868–871

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP, Zapp ML, Green MR, Szostak JW (1991) HIV-1 Rev regulation involves recognition of non-Watson-Crick base pairs in viral RNA. Cell 67: 529–536

    Article  PubMed  CAS  Google Scholar 

  • Bellas R, Hopkins N, Li Y (1993) The NF-kB bindng site is necessary for efficient replication of simian immunodeficiency virus of macaques in primary macrophages but not in T cells in vitro. J Virol 67: 2908–2913

    PubMed  CAS  Google Scholar 

  • Berkhout B (1992) Structural features in TAR RNA of human and simian immunodeficiency viruses: a phylogenetic analysis. Nucleic Acids Res 20: 27–31

    Article  PubMed  CAS  Google Scholar 

  • Berkhout B, Jeang K-T (1989) Trans Activation of human immunodeficiency virus type 1 is sequence specific for both the single-stranded bulge and loop of the trans-acting-responsive hairpin: a quantitative analysis. J Virol 63: 5501–5504

    PubMed  CAS  Google Scholar 

  • Berkhout B, Jeang K-T (1991) A detailed mutational analysis of TAR RNA; critical spacing between the bulge and loop recognition domains. Nucleic Acids Res 19: 6169–6176

    Article  PubMed  CAS  Google Scholar 

  • Berkhout B, Jeang K-T (1992) Functional roles for TATA/promoter and enhancers in basal and Tat-induced expression of the HIV-1 LTR. J Virol 66: 139–149

    PubMed  CAS  Google Scholar 

  • Berkhout B, Silverman RH, Jeang K-T (1989) Tat trans-activates the human immunodeficiency virus through a nascent RNA target. Cell 59: 273–282

    Article  PubMed  CAS  Google Scholar 

  • Berkhout B, Gatignol A, Rabson AB, Jeang K-T (1990a) TAR-independent activation of the HIV-1 LTR: evidence that Tat requires specific regions of the promoter. Cell 62: 757–767

    Article  PubMed  CAS  Google Scholar 

  • Berkhout B, Gatignol A, Silver J, Jeang KT (1990b) Efficient trans-activation by the HIV-2 Tat protein requires a duplicated TAR RNA structure. Nucleic Acids Res 18: 1839–1846

    Article  PubMed  CAS  Google Scholar 

  • Brake DA, Debouk C, Biesecker G (1990) Identification of an Arg-Gly-Asp (RGD) cell adhesion site in human immunodeficiency virus type 1 transactivation protein, tat. J Cell Biol 111:1275–1281

    Article  PubMed  CAS  Google Scholar 

  • Bucher P, Trifonov E (1986) Compilation and analysis of eukaryotic POL II promoter sequences. Nucleic Acids Res 14: 10013–10017

    Article  Google Scholar 

  • Bukrinsky M, Stanwick T, Dempsey M, Stevenson M (1991) Quiescent T lymphocytes as an inducible virus reservoir in HIV-1 infection. Science 254: 423–427

    Article  PubMed  CAS  Google Scholar 

  • Calnan BJ, BiancalanaS, Hudson D, Frankel AD, (1991) Analysis of arginine-rich peptides from the HIV Tat protein reveals unusual features of RNA-protein recognition. Genes Dev 5: 201–210

    Article  PubMed  CAS  Google Scholar 

  • Chang Y-N, Jeang K-T (1992) The basic RNA-binding domain of HIV-2 Tat contributes to preferential trans-activation of a TAR2-containing LTR. Nucleic Acids Res 20: 5465–5472

    Article  PubMed  CAS  Google Scholar 

  • Chang D, Sharp P (1989) Regulation by HIV Rev depends upon recognition of splice sites. Cell 59: 789–795

    Article  PubMed  CAS  Google Scholar 

  • Cheng-Mayer C, Shioda T, Levy J (1991) Host range, replicative, and cytopathic properties of human immunodeficiency virus type 1 are determined by very few amino acid changes in tat and gp 120. J Virol 65: 6931–6941

    PubMed  CAS  Google Scholar 

  • Chang L-J, McNulty E, Martin M (1993) Human immunodeficiency viruses containing heterologous enhancer/promoters are replication competent and exhibit different lymphocyte tropisms. J Virol 67: 743–752

    PubMed  CAS  Google Scholar 

  • Cheng S-M, Blume M, Lee S-G, Hung P, Hirsch V, Johnson P (1990) The simian immunodeficiency virus (SIV) rev gene regulates env expression. J Med Primatol 19: 167–176

    PubMed  CAS  Google Scholar 

  • Churcher M, Lamont C, Hamy F, Dingwall C, Green SM, Lowe AD, Butler JG, Gait MJ, Kam J (1993) High affinity binding of TAR RNA by the human immunodeficiency virus type-1 tat protein requires base pairs in the RNA stem and amino acid residues flanking the basic region. J Mol Biol 230: 90–110

    Article  PubMed  CAS  Google Scholar 

  • Clavel F, Guetard D, Brun-Vezinet F, Chamaret S, Rey M, Santos-Ferreira M, Laurent A, Dauguet C, Katlama C, Rouzioux C, Klatzmann D, Champalimaud J, Montagnier L (1986) Isolation of a new human retrovirus from West African patients with AIDS. Science 233: 343–346

    Article  PubMed  CAS  Google Scholar 

  • Clavel F, Mansinho K, Chamaret S, Guetard D, Favier V, Nina J, Santos-Ferreira MO, Champalimaud J-L, Montagnier L (1987) Human immunodeficiency virus type 2 infection associated with AIDS in West Africa. N Engl J Med 316: 1180–1185

    Article  PubMed  CAS  Google Scholar 

  • Cochrane A, Chen C, Rosen C (1990a) Specific interaction of the human immunodeficiency virus Rev protein with a structured region in env mRNA. Proc Natl Acad Sci USA 87: 1198–1202

    Article  PubMed  CAS  Google Scholar 

  • Cochrane A, Perkins A, Rosen C (1990b) Identification of sequences important in the nucleolar localization of human immunodeficiency virus Rev: relevance of nucleolar localization to function. J Virol 64: 881–885

    PubMed  CAS  Google Scholar 

  • Cohen E, Dehni G, Sodroski J, Haseltine W (1990) Human immunodeficiency virus vpr product is a virion-associated regulatory protein. J Virol 64: 3097–3099

    PubMed  CAS  Google Scholar 

  • Constantoulakis P, Campbell M, Felber JB, Nasioulas G, Afonina E, Pavlakis G, (1993) Inhibition of Rev-mediated HIV-1 expression by an RNA binding protein encoded by the interferon-inducible 9–27 gene. Science 259: 1314–1318

    Article  PubMed  CAS  Google Scholar 

  • Cooney AJ, Tsai SY, O’Malley B, Tsai MJ (1991) Chicken ovalbumin upstream promoter transcription factor binds to a negative regulatory region in the human immunodeficiency virus type 1 long terminal repeat. J Virol 65: 2853–2860

    PubMed  CAS  Google Scholar 

  • Cordingley MG, LaFemina RL, Callahan PL, Condra JH, Sardana VV, Graham DJ, Nguyen TM, LeGrow K, Gotlib L, Schlabach AJ, Colonno RJ (1990) Sequence-specific interaction of Tat protein and Tat peptides with the transactivation responsive sequence element of human immunodeficiency virus type 1 in vitro. Proc Natl Acad Sci USA 87: 8985–8989

    Article  PubMed  CAS  Google Scholar 

  • Crabtree G. (1989) Contingent genetic regulatory events in T-lymphocyte activation. Science 243: 355–361

    Article  PubMed  CAS  Google Scholar 

  • Cullen BR (1990) The HIV-1 Tat protein: an RNA sequence-specific processivity factor? Cell 63: 655–657

    Article  PubMed  CAS  Google Scholar 

  • Cullen BR, Garrett ED (1992) A comparison of regulatory features in primate lentiviruses. AIDS Res Hum Retroviruses 8:387–393

    Article  PubMed  CAS  Google Scholar 

  • Daefler S, Klotmena M, Wong-Staal F (1990) Trans-activating Rev protein of the human immunodeficiency virus 1 interacts directly and specifically with its target RNA. Proc Natl Acad Sci USA 87: 4571–4575

    Article  PubMed  CAS  Google Scholar 

  • D’Agostino D, Felber B, Harrison J, Pavlakis G (1992) The Rev protein of human immunodeficiency virus type 1 promotes polysomal association and translation of gag/pol and vpu/env mRNAs. Mol Cell Biol 12:1375–1386

    Google Scholar 

  • Daly T, Cook K, Gray G, Malone T, Rusche J. (1989) Specific binding of HIV-1 recombinant Rev protein to the Rev-responsive element in vitro. Nature 343: 816–819

    Article  Google Scholar 

  • Daniel M, Kirchhoff F, Czajak S, Sehgal P, Desrosiers RC, (1992) Protective effects of a live attenuated SIV vaccine with a deletion in the nef gene. Science 258: 1938–1941

    Article  PubMed  CAS  Google Scholar 

  • Dayton AI, Sodroski JG, Rosen CA, Goh WC, Haseltine WA (1986) The transactivator gene of the human T Cell lymphotropic virus type III is required for replication. Cell 44: 941–947

    Article  PubMed  CAS  Google Scholar 

  • Dayton E, Powell D, Dayton A (1989) Functional analysis of CAR, the target sequence for the Rev protein of HIV-1. Science 246: 1625–1629

    CAS  Google Scholar 

  • Dayton E, Konings D, Lim S, Hsu R, Butini L, Pantaleo, G, Dayton A (1993) The RRE of human immunodeficiency virus type 1 contributes to cell-type-specific viral tropism. J Virol 67:287–2878

    Google Scholar 

  • Derse D, Carvalho M, Carroll R, Peterlin BM (1991) A minimal lentivirus Tat. J Virol 65: 7012–7015

    PubMed  CAS  Google Scholar 

  • Desrosiers, RC (1990) The simian immunodeficiency viruses. Annu Rev Immunol 8: 557–578

    Article  PubMed  CAS  Google Scholar 

  • Dewhurst S, Embretson JE, Anderson DC, Mullins Jl, Fultz P (1990) Sequence analysis and acute pathogenicity of molecularly cloned SIVsmm-pbj14. Nature 345: 636–640

    Article  PubMed  CAS  Google Scholar 

  • Dillon P, Nelbock P, Perkins A, Rosen C (1990) Function of the human immunodeficiency virus types 1 and 2 Rev proteins is dependent on their ability to interact with a structured region present in env gene mRNA. J Virol 64: 4428–4437

    PubMed  CAS  Google Scholar 

  • Dillon P, Nelbock P, Perkins A, Rosen C (1991) Structural and functional analysis of the human immunodeficiency virus type 2 Rev protein. J Virol 65: 445–449

    CAS  Google Scholar 

  • Dingwall C, Ernberg I, Gait MJ, Green SM, Heaphy S, Karn J, Lowe AD, Singh M, Skinner MA, Vallerio R (1989) Human immunodeficiency virus 1 tat protein binds trans-activation responsive region (TAR) RNA in vitro. Proc Natl Acad Sci USA 86: 6925–6929

    Article  PubMed  CAS  Google Scholar 

  • Dufoort G, Courouce AM, Ancelle-Park R, Bletry 0 (1988) No clinical signs 14 year after HIV-2 transmission via bolld transfection. Lancet 2: 510

    Article  PubMed  CAS  Google Scholar 

  • Dynan WS (1989) Modularity in promoters and enhancers. Cell 58: 1–4

    Article  PubMed  CAS  Google Scholar 

  • Elangovan B, Subramanian T, Chinnadurai G (1992) Functional comparison of the basic domains of the Tat proteins of human immunodeficiency virus types 1 and 2 in trans activation. J Virol 66: 2031–2036

    PubMed  CAS  Google Scholar 

  • Emerman M, Guyader M, Montagnier L, Baltimore D, Muesing MA (1987) The specificity of the human immunodeficiency virus type 2 trans-activator is different from that of human immunodeficiency virus type 1. EMBO J 6: 3755–3760

    PubMed  CAS  Google Scholar 

  • Felber B, Hadzopoulou-Cladras M, Cladaras C, Copeland T, Pavlakis G (1989) Rev protein of human immunodeficiency virus type 1 affects the stability and transport of the viral mRNA. Proc Natl Acad Sci USA 86: 1495–1499

    Article  PubMed  CAS  Google Scholar 

  • Felsenfeld G (1992) Chromatin as an essential part of the transcriptional mechanism. Nature 355:219–224

    Article  PubMed  CAS  Google Scholar 

  • Feng S, Holland EC (1988) HIV-1 tat trans-activation requires the loop sequence within TAR. Nature 334: 165–167

    Article  PubMed  CAS  Google Scholar 

  • Fenrick R, Malim M, Hauber J, Le SY, Maizel J, Cullen B (1989) Functional analysis of the tat trans-activator of human immunodeficiency virus type II. J Virol 63: 5005–5012

    Google Scholar 

  • Fisher AG, Feinberg SF, Josephs SF, Harper ME, Marselle LM, Reyes G, Gonda MA, Aldovini A, Debouk C, Gallo RC, Wong-Staal F (1986) The trans-activator gene of HTLV-III is essential for virus replication. Nature 320: 367–371

    Article  PubMed  CAS  Google Scholar 

  • Frankel A, Pabo C (1988) Cellular uptake of the Tat protein from human immunodeficiency virus. Cell 55:1189–1193

    Article  PubMed  CAS  Google Scholar 

  • Franza BR, Josephs SF, Gilman M, Ryan W, Clarkson B (1987) Characterization of cellular proteins recognizing the HIV enhancer using a microscale DNA-affinity precipitation assay. Nature 330: 391–395

    Article  PubMed  CAS  Google Scholar 

  • Fukasawa M, Miura T, Hasegawa A, Morikawa S, Tsujimoto H, Miki K, Kitamura T, Hayami M (1988) Sequence of simian immunodeficiency virus from African green monkey, a new member of HIV/SIV group. Nature 333: 457–461

    Article  PubMed  CAS  Google Scholar 

  • Gallo R, Salahuddin S, Popovic M, Shearere G, Kaplan M, Haynes B, Palker T, Redfield R, Oleske J, Safai B, White G, Foster P, Markham P (1984) Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS. Science 224: 500–503

    Article  PubMed  CAS  Google Scholar 

  • Garcia JA, Wu FK, Mitsuyasu R, Gaynor RB (1987) Interactions of cellular proteins involved in the transcriptional regulation of the human immunodeficiency virus. EMBO J 6: 3761–3770

    PubMed  CAS  Google Scholar 

  • Gatignol A, Buckler-White A, Berkhout B, Jeang K-T (1991) Characterization of a human TAR RNA-binding protein that activates the HIV-1 LTR. Science 251: 1597–1600

    Article  PubMed  CAS  Google Scholar 

  • Gatignol A, Buckler C, Jeang K-T (1993) Relatedness of an RNA-binding motif in human immunodeficiency virus type 1 TAR RNA-binding protein TRBP to human P1/dsl kinase and Drosophila staufen Mol Cell Biol 13: 2193–2202

    PubMed  CAS  Google Scholar 

  • Gendelman HE, Phelps W, Feigenbaum L, Ostrove JM, Adachi A, Howley PM, Khoury G, Ginsberg HS, Martin M (1986) Trans-activation of the human immunodeficiency virus long terminal repeat sequence by DNA viruses. Proc Natl Acad Sci USA 83: 9759–9763

    Article  PubMed  CAS  Google Scholar 

  • Guyader M, Emerman M, Sonigo P, Clavel F, Gluckman J-C, Alizon M (1987) Genome organization and transactivation of the human immuno-deficiency virus type 2. Nature 326: 662–669

    Article  PubMed  CAS  Google Scholar 

  • Harrich D, Garcia J, Wu F, Mitsuyasu R, Gonzalez J, Gaynor RB (1989) Role of Sp1 -binding domains in in vivo transcriptional regulation of the human immunodeficiency virus type 1 long terminal repeat. J Virol 63: 2585–2591

    PubMed  CAS  Google Scholar 

  • Hattori N, Michaels F, Fargnoli K, Marcon L, Gallo R, Franchini G (1990) The human immunodeficiency virus type 2 vpr gene is essential for productive infection of human macrophages. Proc Natl Acad Sci USA 87: 8080–8084

    Article  PubMed  CAS  Google Scholar 

  • Hauber J, Cullen BR (1988) Mutational analysis of the trans-activation-responsive region of the human immunodeficiency virus type I long terminal repeat. J Virol 62: 673–679

    PubMed  CAS  Google Scholar 

  • Heaphy S, Dingwall C, Erngerg I, Gait M, Green S, Kam J, Lowe A, Singh M, Skinner M (1990) HIV-1 regulator of virion expression (Rev) protein binds to an RNA stem-loop structure located within the Rev response element region. Cell 60: 685–693

    Article  PubMed  CAS  Google Scholar 

  • Heaphy S, Finch J, Gait M, Kam J, Singh M (1991) Human immunodeficiency virus type 1 regulator of virion expression rev, forms nucleoprotein filaments after binding to a purine rich “bubble” located within the rev-responsive region of viral mRNAs. Proc Natl Acad Sci USA 88: 7366–7370

    Article  PubMed  CAS  Google Scholar 

  • Holland S, Ahmad N, Maitra R, Wingfield P, Venkatassan S (1990) Human immunodeficiency virus Rev protein recognizes a target sequence in rev-responsive element RNA within the context of RNA secondary structure. J Virol 64: 5966–5975

    PubMed  CAS  Google Scholar 

  • Hope T, Huang X, McDonald D, Parslow T (1990a) Steroid-receptor fusion of the human immunodeficiency virus type 1 Rev transactivator: mapping cryptic functions of the arginine-rich motif. Proc natl Acad Sci USA 88: 7787–7791

    Article  Google Scholar 

  • Hope T, McDonald D, Huang X, Low J, Parslow T (1990b) Mutational analysis of the human immunodeficiency virus type 1 Rev transactivator: essential residues near the amino terminus. J Virol 64: 5360–5366

    PubMed  CAS  Google Scholar 

  • Hope T, Bond BL, McDonald D, Klein N, Parslow T (1991) Effector domains of human immunodeficiency virus type 1 Rev and human T-cell leukemia virus type I Rex are functionally interchangeable and share an essential peptide motif. J Virol 65: 6001–6007

    PubMed  CAS  Google Scholar 

  • Huet T, Cheynier R, meyerhans A, Roelants G, Wain-Hobson S (1990) Genetic organization of a chimpanzee lentivirus related to HIV-1. Nature 345: 356–359

    Article  PubMed  CAS  Google Scholar 

  • Jaeger JA, Turner DH, Zuker M (1989) Predicting optimal and suboptimal secondary structure for RNA. Methods Enzymol 183: 281–306

    Article  Google Scholar 

  • Jakobovits A, Smith DH, jakobovits EB, Capon DJ (1988) A discrete element 3’ of human immunodeficiency virus (HIV-1) and HIV-2 mRNA initiation sites mediates transcriptional activation by an HIV trans-activator. Mol Cell Biol 8: 2555–2561

    PubMed  CAS  Google Scholar 

  • Jeang K-T, Berkhout B (1992) Kinetics of HIV-1 long terminal repeat transactivation. Use of intragenic ribozyme to assess rate-limiting steps. J Biol Chem 267: 17891–17899

    PubMed  CAS  Google Scholar 

  • Jeang K-T, Chang YN, Berkhout B, Hammarskjold M-L, Rekosh D (1991) Regulation of HIV expression: mechanisms of action of Tat and Rev. AIDS 5: S3-S14

    Article  Google Scholar 

  • Johnson PF, McKnight SL (1989) Eucaryotic transcriptional regulatory proteins. Annu Rev Biochem 58: 799–839

    Article  PubMed  CAS  Google Scholar 

  • Jones KA (1989) HIV trans-activation and transcription control mechanisms. New Biol 1: 127–135

    PubMed  CAS  Google Scholar 

  • Jones KA, Kadonaga JT, Luciw PA, Tjian R (1986) Activation of the AIDS retrovirus promoter by the cellular transcription factor, Spl. Science 232: 755–759

    Article  PubMed  CAS  Google Scholar 

  • Jones KA, Luciw PA, Duchange N (1988) Sturctural arrangements of transcription control domains within the 5’-untranslated leader regions of the HIV-1 and HIV-2 promoters. Genes Dev 2:1101–1114

    Article  PubMed  CAS  Google Scholar 

  • Kamine J, Subramanian T, Chinnadurai G (1991) Sp1-dependent activation of a synthetic promoter by human immunodeficiency virus type I Tat protein. Proc Natl Acad Sci USA 88: 8510–8514

    Article  PubMed  CAS  Google Scholar 

  • Kato H, Hirikoshi H, Roeder R (1991) Repression of HIV-1 transcription by a cellular protein. Science 251: 1476–1479

    Article  PubMed  CAS  Google Scholar 

  • Kawakami K, Schneidereit C, Roeder RG (1988) Identification and purification of a human immunoglobulin enhancer-binding protein (NF-KB) that activates transcription from a human immunodeficiency virus type 1 promoter in vitro. Proc Natl Acad Sci USA 82: 488–492

    Google Scholar 

  • Kestler H, Ringler D, Mori K, Panicali D, Desrosiers R (1991) Importance of the nef gene for maintenance of high virus load and for development of AIDS. Cell 65: 651–662

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Gonzalez-Scarano F, Zeichner S, Alwine J (1993) Replication of type 1 human immunodeficiency viruses containing linker substitution mutations in the -201 to -130 region of the long terminal repeat. J Virol 67: 1658–1662

    PubMed  CAS  Google Scholar 

  • Kjems J, Brown M, Chang DD, Sharp PA (1991 a). Structural analysis of the interaction between the human immunodeficiency virus rev protein and the rev response element. Proc Natl Acad Sci USA 88: 683–687

    Article  PubMed  CAS  Google Scholar 

  • Kjems J, Frankel A, Sharp PA (1991 b) Specific regulation of mRNA in vitro by a peptide from HIV-1. Rev Cell 67: 169–178

    CAS  Google Scholar 

  • Koken SE, van Wamel J, Goudsmit J, Berkhout B, Geelen JL (1992) Natural variants of the HIV-1 long terminal repeat: analysis of promoters with duplicated DNA regulatory motifs. Virology 191: 968–972

    Article  PubMed  CAS  Google Scholar 

  • Kuppuswamy M, Subramanian T, Srinivasan A, Chinnadurai G (1989) Multiple functional domains of Tat, the transactivator of HIV-1, defined by mutational analysis. Nucleic Acids Res 17: 3551–3561

    Article  PubMed  CAS  Google Scholar 

  • Lang S, Weeger M, Stahl-Hennig C, Coulibaly C, Hunsmann G, Muller J, Muller-Hermelink H, Fuchs D, Wächter H, Daniel M, Desrosiers R, Fleckenstein B (1993) Importance of vpr for infection of rhesus monkeys with simian immunodeficiency virus. J Virol 67: 902–912

    PubMed  CAS  Google Scholar 

  • Laspia MF, Rice AP, Matthews MB (1989) HIV-1 Tat protein increases transcriptional initiation and stabilizes elongation. Cell 59: 283–292

    Article  PubMed  CAS  Google Scholar 

  • Le SY, Malim M, Cullen B, Maizel JV (1990) A highly conserved RNA folding region coincident with the Rev-response element of primate immunodeficiency viruses. Nucleic Acids Res 18: 1613–1623

    Article  PubMed  CAS  Google Scholar 

  • Leiden J, Wang C, Petryniak B, Markovitz D, Nabel G, Thompson C (1992) A novel Ets-related transcription factor, Elf-1, binds to human immunodeficiency virus type 2 regulatory elements that are required for inducible trans-activation in T cells. J Virol 66: 5890–5897

    PubMed  CAS  Google Scholar 

  • Lenardo M, Baltimore D (1989) NF-/cB; a pleiotropic mediator of inducible and tissue-specificgene control. Cell 58: 227–229

    Article  PubMed  CAS  Google Scholar 

  • Leonard J, Parrott C, Buckler-White A, Turner W, Ross E, Martin M, Rabson A (1989) The NF-KB binding sites in the HIV-1 long terminal repeats are not required for virus infectivity. J Virol 63: 4919–4924

    PubMed  CAS  Google Scholar 

  • Levy J, Hoffman A, Kramer S, Landis JA, Shimabukuro J, Oshiro L (1984) Isolation of lymphocytopathic retroviruses from San Francisco patients with AIDS. Science 225: 840–842

    Article  PubMed  CAS  Google Scholar 

  • Lewis N, Williams J, Rekosh D, Hammarskjold M-L(1990) Identification of a cis-acting element in human immunodeficiency virus type 2 (HIV-2) that is responsive to the HIV-1 rev and human T-cell leukemia virus types I and II rex proteins. J Virol 64: 1690–1697

    PubMed  CAS  Google Scholar 

  • Lu X, Heimer J, Rekosh D, Hammarskjold M-L (1990) U1 small nuclear RNA plays a direct role in the formation of a rev-regulated human immunodeficiency virus env mRNA that remains unspliced. Proc Natl Acad Sci USA 87: 7598–7602

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Touzhan N, Stenzel M, Dorfman T, Sodroski J, Haseltine W (1990) Identification of cis-acting repressive sequences within the negative regulatory element of human immunodeficiency virus type 1. J Virol 64: 5226–5229

    PubMed  CAS  Google Scholar 

  • Malim MH, Cullen BR (1991) HIV-1 structural gene expression requires the binding of multiple Rev monomers to the viral RRE: implications for HIV-1 latency. Cell: 241–248

    Google Scholar 

  • Malim MH, Bohnlein S, Fenrick R, Le S-Y, Maizel J, Cullen BR (1989a) Functional comparison of the Rev trans-activators encoded by different primate immunodeficiency virus species. Proc Natl Acad Sci USA 86: 8222–8226

    Article  PubMed  CAS  Google Scholar 

  • Malim MH, Bohnlein S, Hauber J, Cullen BR (1989b) Functional dissection of the HIV-1 Rev trans-activator-derivation of a trans-dominant repressor of Rev function. Cell 58: 205–214

    Article  PubMed  CAS  Google Scholar 

  • Malim MH, Hauber J, Le S-Y, Maizel J, Cullen BR (1989c) The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature 338: 254–257

    Article  PubMed  CAS  Google Scholar 

  • Malim MH, Tiley LS, McCarn DF, Rusche JR, Hauber J, Cullen BR (1990) HIV-1 Structural gene expression requires binding of the Rev transactivator to its RNA target sequence. Cell 60: 675–683

    Article  PubMed  CAS  Google Scholar 

  • Malim MH, McCarn DF, Tiley L, Cullen BR, (1991) Mutational definition of the human immunodeficiency virus type 1 Rev activation domain. J Virol 65: 4248–4254

    PubMed  CAS  Google Scholar 

  • Markovitz D, Hannibal M, Perez V, Gauntt C, Folks T, Nabel G (1990) Differential regulation of human immunodeficiency viruses (HIVs): a specific regulatory element in HIV-2 responds to stimulation of the T-cell antigen receptor. Proc Natl Acad Sci USA 87: 9098–9102

    Article  PubMed  CAS  Google Scholar 

  • Markovitz D, Smith M, Hilfinger J, Hannibal M, Petryniak B, Nabel G (1992) Activation of the human immunodeficiency virus type 2 enhancer is dependent on purine box and kB regulatory elements. J Virol 66: 5479–5484

    PubMed  CAS  Google Scholar 

  • Martin MA (1990) Fast-acting slow virus. Nature 345: 572–573

    Article  PubMed  CAS  Google Scholar 

  • McDonald D, HopeT, ParslowT (1992) Posttranscriptional regulation by the human immunodeficiency virus type 1 Rev and human T-cell leukemia virus type I Rex protein through a heterologous RNA binding site. J Virol 66: 7232–7238

    PubMed  CAS  Google Scholar 

  • McNally MT, Gotarek R, Beemon K (1991) Characterization of Rous sarcoma virus intronic sequences that negatively regulate splicing. Virology 185: 99–108

    Article  PubMed  CAS  Google Scholar 

  • Mosca J, bednarik D, Raj N, Rosen C, Sodroski J, Haseltine W, Hayward G, Pitha P (1987) Activation of human immunodeficiency virus by herpesvirus infection: identification of a region within the long terminal repeat that responds to a trans-acting factor encoded by herpes simplex virus 1. Proc Natl Acad Sci USA 84: 7408–7412

    Article  PubMed  CAS  Google Scholar 

  • Muesing MA, Smith DH, Capon DJ (1987) Regulation of mRNA accumulation by a human immunodeficiency virus trans-activator protein. Cell 48: 691–701

    Article  PubMed  CAS  Google Scholar 

  • Myers G, Berzofsky J, Korber B, Smith R, Pavlakis GN (1992a) Human retroviruses and AIDS. A compilation and analysis of nucleic acid and amino acid sequences. Los Alamos Laboratories, Los Alamos

    Google Scholar 

  • Myers G, Maclnnes K, Korber B (1992b) The emergence of simian/human immunodeficiency viruses. AIDS Res Hum Retroviruses 8: 373–386

    Article  PubMed  CAS  Google Scholar 

  • Nabel G, Baltimore D (1987) An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature 326: 711–713

    Article  PubMed  CAS  Google Scholar 

  • Nelson J, Reynolds-Kholer C, Oldstone M, Wiley CA (1988) HIV and HCMV coinfect brain cells in patients with AIDS. Virology 165: 286–290

    Article  PubMed  CAS  Google Scholar 

  • Olsen H, Cochrane A, Dillon P, Nalin C, Rosen C (1990) Interaction of the human immunodeficiency virus type 1 Rev protein with a structured region in env mRNA is dependent on multimer formation mediated through a basic stretch of amino acids. Genes Dev 4: 1357–1364

    Article  PubMed  CAS  Google Scholar 

  • Pang S, Koyanagi Y, Miles S, Wiley C, Vinters HV, Chen ISY (1990) High levels of unintegrated HIV-1 DNA in brain tissue of AIDS dementia patients. Nature: 85–89

    Google Scholar 

  • Parrot C, Seidner T, Duh E, Leonard J, Theodore TS, Buckler-White A, Martin MA, Rabson AB (1991) Variable role of the long terminal repeat Sp1 -binding sites in human immunodeficiency virus replication in T lymphocytes. J Virol 65: 1414–1419

    Google Scholar 

  • Pavlakis GN, Felber BK (1990) Regulation of expression of human immunodeficiency virus. New Biol 2: 20–31

    PubMed  CAS  Google Scholar 

  • Rhim H, Rice AP (1993) TAR RNA binding properties and relative transactivation activities of human immunodeficiency virus type 1 and type 2 Tat proteins. J Virol 67: 1110–1121

    PubMed  CAS  Google Scholar 

  • Rosen CA, Sodroski JG, Haseltine WA (1985) The location of cis-acting regulatory sequences in the human T cell lymphotropic virus type III (HTLV-III/LAV) long terminal repeat. Cell 41:813–823

    Article  PubMed  CAS  Google Scholar 

  • Ross E, Buckler-White A, Rabson AB, Englund G, Martin MA (1991) Contribution of NF-KB and Spl binding motifs to the replicative capacity of human immunodeficiency virus type 1: distinct patterns of viral growth are determined by T-cell types. J Virol 65: 4350–4358

    PubMed  CAS  Google Scholar 

  • Roy S, Parkin NT, Rosen C, Itovitch J, Sonenberg N (1990) Structural requirements for trans-activation of human immunodeficiency virus type 1 long terminal repeat-directed gene expression by Tat: importance of base pairing, loop sequence, and bulges in the Tatresponsive sequence. J Virol 64: 1402–1406

    PubMed  CAS  Google Scholar 

  • Sakai H, Shibata R, Miura T, Hayami M, Ogawa K, Kiyomasu T, Ishimoto A, and Adachi A (1990a) Complementation of the rev gene mutation among human and simian lentiviruses. J Virol 64: 2202–2207

    PubMed  CAS  Google Scholar 

  • Sakai H, Siomi H, Shida H, Shibata R, Kiyomusu T, Adachi A (1990b) Functional comparison of transactivation by human retrovirus rev and rex genes. J Virol 64: 5833–5839

    PubMed  CAS  Google Scholar 

  • Sakai H, Shibata R, Sakuragi J, Kiyomasu T, Kawamura M, Hayami M, Ishimota A, Adachi A (1991) Compatibility of rev gene activity in the four groups of primate lentiviruses. Virology 184: 513–520

    Article  PubMed  CAS  Google Scholar 

  • Sakai H, Sakuragi J, Sayuri S, Shibata R, Adachi A (1992) Functional analysis of biologically distinct genetic variants of simian immunodeficiency virus isolated from a mandrill. Virology 189: 161–166

    Article  PubMed  CAS  Google Scholar 

  • Sakai H, Kawamura M, Sakuragi J, Sakuragi S, Shibata R, Ishimoto A, Ono N, Ueda S, Adachi A (1993) Integration is essential for efficient gene expression of human immunodeficiency virus type 1. J Virol 67: 1169–1174

    PubMed  CAS  Google Scholar 

  • Sakuragi J, Sakai H, Sakuragi S, Shibata R, Wain-Hobson S, Hayami M, Adachi A (1992) Functional classification of simian immunodeficiency virus isolates from a chimpanzee by transactivators. Virology 189: 354–358

    Article  PubMed  CAS  Google Scholar 

  • Savageau MA (1991) Reconstructionist molecular biology. New Biol 3: 190–197

    PubMed  CAS  Google Scholar 

  • Schwartz S, Felber B, Benko D, Fenyo E, Pavlakis G (1990) Cloning and functional analysis of multiply spliced mRNA species of human immunodeficiency virus type 1. J Virol 64: 5448–5456

    PubMed  CAS  Google Scholar 

  • Selby MJ, Peterlin BM (1990) Trans-activation by HIV-1 Tat via a heterologous RNA binding protein. Cell 62: 769–776

    Article  PubMed  CAS  Google Scholar 

  • Seigel LJ, Ratner L, Josephs SF, Derse D, Feinberg MB, Reyes GA, O’Brien, SJ, Wong-Staal F (1986) Transactivation induced by human T-lymphotropic virus type III (HTLV-III) maps to a viral sequence encoding 58 amino acids and lacks tissue specificity. Virology 148: 226–231

    Article  PubMed  CAS  Google Scholar 

  • Sharp PA, Marciniak RA (1989) HIV TAR: an RNA enhancer? Cell 59: 229–230

    Article  PubMed  CAS  Google Scholar 

  • Shaw J-P, Utz PJ, Durand DB, Toole J J, Emmel E, CrabtreeG (1988) Identification of a putative regulatory of early T cell activation genes. Science 241: 202–205

    Article  PubMed  CAS  Google Scholar 

  • Sheline C, Milocco L, Jones KA (1991) Two distinct nuclear transcription factors recognize loop and bulge residues of the HIV-1 TAR RNA hairpin. Genes Dev 5: 2508–2520

    Article  PubMed  CAS  Google Scholar 

  • Shibata R, Miura T, Hayami M, Ogawa K, Sakai H, Kiyomasu T, Ishimoto A, Adachi A (1990a) Mutational analysis of the human immunodeficiency virus type 2 (HIV-2) genomein relation to HIV-1 and simian immunodeficiency virus SIVagm. J Virol 64: 742–747

    PubMed  CAS  Google Scholar 

  • Shibata R, Miura T, Hayami M, Sakai H, Ogawa K, Kiyomasu T, Ishimotao A, Adachi A (1990b) Construction and characterization of an infectious DNA clone and of mutants of simian immunodeficiency virus isolated from the African green monkey. J Virol 64: 307–312

    PubMed  CAS  Google Scholar 

  • Shibata R, Sakai H, Kiyomusu T, Ishimoto A, Hayami M, Adachi A (1990c) Generation and characterization of infectious chimeric clones between human immunodeficiency virus type 1 and simian immunodeficiency virus from an African green monkey. J Virol 64: 5861–5868

    PubMed  CAS  Google Scholar 

  • Siekevitz M, Josephs S, Dukovich M, Peffer N, Wong-Staal F, Greene W (1987) Activation of the HIV-1 LTR by T cell mitogens and the trans-activator protein of HTLV-I. Science 238: 1575–1579

    Article  PubMed  CAS  Google Scholar 

  • Sodroski JG, Patarca R, Rosen CA, Wong-Staal F, Haseltine WA (1985) Location of the trans-activating region on the genome of human T-cell lymphotropic virus type III. Science 229: 74–77

    Article  PubMed  CAS  Google Scholar 

  • Sodroski J, Goh W, Rosen C, Dayton A, Terwilliger E, Haseltine W (1986) A second post-transcriptional trans-activator gene required for HTLV-III replication. Nature 321: 74–77

    Article  Google Scholar 

  • Southgate CD, Green MR (1991) The HIV-1 tat protein activates transcription from an upstream DNA-binding site: implicatons for tat function. Genes Dev 5: 2496–2507

    Article  PubMed  CAS  Google Scholar 

  • Southgate C, Zapp ML Green MR (1990) Activation of transcription by HIV-1 Tat protein tethered to nascent RNA through another protein. Nature 345: 640–642

    Article  PubMed  CAS  Google Scholar 

  • Stolfus M, Fogarty S (1989) Multiple regions in the Rous sarcoma virus src gene intron acts in eis to affect the accumulation of unspliced RNA. J Virol 63: 1669–1676

    Google Scholar 

  • Terwilliger E, Burghoff R, Sia R, Sodroski J, Haseltine W, Rosen C (1988) The art gene product of human immunodeficiency virus is required for replication. J Virol 62: 655–658

    PubMed  CAS  Google Scholar 

  • Tong-Starksen SE, Welsh TM, Peterlin BM (1990) Differences in transcriptional enhancers of HIV-1 and HIV-2. Response to T cell activation signals. J Immunol 145: 4348–4354

    PubMed  CAS  Google Scholar 

  • Tsujimoto H, Hasegawa A, Maki N, Fukasawa M, Miura T, Speidel S, Cooper RW, Moriyama EN, Gojobori T, Hayami M (1989) Sequence of a novel simian immunodeficiency virus from a wild-caught African mandrill. Nature 341: 539–541

    Article  PubMed  CAS  Google Scholar 

  • Vaishnav YN, Wong-Staal F (1991) The biochemistry of AIDS. Annu Rev Biochem 60:577–630

    Article  PubMed  CAS  Google Scholar 

  • Vaishnav YN, Vaishnav M, Wong-Staal F (1991) Identification and characterization of a nuclear factor that specifically binds to the Rev response element (RRE) of human immunodeficiency virus type 1 (HIV-1). New Biol 3: 142–150

    PubMed  CAS  Google Scholar 

  • Venkatesh L, Mohammed S, Chinnadurai G (1990) Functional domains of the HIV-1 rev gene required for trans-regulation and subcellular localization. Virology 176: 39–47

    Article  PubMed  CAS  Google Scholar 

  • Viglianti GA, Mullins Jl (1988) Functional comparison of transactivation by simian immunodeficiency virus from rhesus macaques and human immunodeficiency virus type 1. J Virol 62: 4523–4532

    PubMed  CAS  Google Scholar 

  • Viglianti GA, Sharma P, Mullins Jl (1990) Simian immunodeficiency virus displays complex patterns of RNA splicing. J Virol 64: 4207–4216

    PubMed  CAS  Google Scholar 

  • Waterman M, Fischer W, Jones KA (1991) Athymus-specific member of the HMG protein family regulates the human T cell receptor Ca enhancer. Genes Dev 5: 656–669

    Article  PubMed  CAS  Google Scholar 

  • Weeks KM, Crothers DM (1991) RNA recognition by Tat-derivied peptides: interaction in the major groove? Cell 66: 577–588

    Article  PubMed  CAS  Google Scholar 

  • Weeks KM, Ampe C, Schultz SC, Steitz TA, Crothers DM (1990) Fragments of the HIV-1 Tat protein specifically bind TAR RNA. Science 249: 1281–1285

    Article  PubMed  CAS  Google Scholar 

  • Winandy S, Renjifo B, Li Y, Hopkins N (1992) Nuclear factors that bind two regions important to transcriptional activity of the simian immunodeficiency virus long terminal repeat. J Virol 66: 5216–5223

    PubMed  CAS  Google Scholar 

  • Wu FK, Garcia JA, Harrich D, Gaynor RA (1988) Purification of the human immunodeficiency virus type 1 enhancer and TAR binding proteins EBP-1 and UBP-1. EMBO J 7:2117–2129

    PubMed  CAS  Google Scholar 

  • Wu FK, Garcia J, Sigman D, Gaynor R (1991) tat regulates the binding of the human immunodeficiency virus trans-activating region RNA loop-binding protein TRP-185. Genes Dev 5: 2128–2140

    Article  PubMed  CAS  Google Scholar 

  • Yu X-F, Matsuda M, Essex M, Lee T-H (1990) Open reading frame vpr of simian immunodeficiency virus encodes a virion-associated protein. J Virol 64: 5688–5693

    PubMed  CAS  Google Scholar 

  • Zack J, Cann A, Lugo J, Chen ISY (1988) HIV-1 production from infected peripheral blood T cells after HTLV-I induced mitogenic stimulation. Science 240: 1026–1029

    Article  PubMed  CAS  Google Scholar 

  • Zack J, Arrigo S, Weitsman S, Go A, Haislip A, Chen IS (1990) HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile latent viral structure. Cell 61: 213–222

    Article  PubMed  CAS  Google Scholar 

  • Zapp M, Green MR (1989) Sequence-specific RNA binding by the HIV-1 Rev protein. Nature 342:714–716

    Article  PubMed  CAS  Google Scholar 

  • Zapp M, Hope T, Parslow T, Green MR (1991) Oligomerization and RNA binding domains of the type 1 human immunodeficiency virus Rev protein: a dual function for an arginine-rich binding motif. Proc Natl Acad Sci USA 88: 7734–7738

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann K, Dobrovnik M, Ballaun C, Bevec D, Hauber J, Bohnlein E (1991) trans- Activation of the HIV-1 LTR by the HIV-1 Tat and HTLV-I Tax proteins is mediated by different cis-acting sequences. Virology 182: 874–878

    Article  PubMed  CAS  Google Scholar 

  • Zuker M (1989) On finding all suboptimal foldings of an RNA molecule. Science 244: 48–52

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jeang, K.T., Gatignol, A. (1994). Comparison of Regulatory Features Among Primate Lentiviruses. In: Letvin, N.L., Desrosiers, R.C. (eds) Simian Immunodeficiency Virus. Current Topics in Microbiology and Immunology, vol 188. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78536-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78536-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78538-2

  • Online ISBN: 978-3-642-78536-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics