Advertisement

Recent Developments in Analytical Methods in Mineralogy

  • P. J. Potts
  • J. G. Crock
  • P. H. Briggs
  • V. P. Afonin
  • Chr. Koeberl
  • S. J. Parry
  • P. F. McDermott
  • K. E. Jarvis
Part of the Advanced Mineralogy book series (AM, volume 2)

Abstract

As in other branches of science, analytical techniques for the chemical characterisation of geological materials have undergone a revolution over the past 30 years. The introduction of a succession of new and increasingly powerful techniques over this period has resulted in (1) a substantial increase in the range and sensitivity with which elements may be determined on a routine basis; (2) a considerable increase in analytical productivity in terms of determinations per day; and (3) a reduction in the manpower required to generate such data. This revolution has been accompanied by a progression away from essentially manual procedures involving chemical manipulations, as used in classical and rapid schemes of analysis, to instrumental techniques capable of automated operation with the minimum of operator intervention.

Keywords

Inductively Couple Plasma Mass Spectrometry Neutron Activation Analysis Instrumental Neutron Activation Analysis Thermal Ionization Mass Spectrometry Geological Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Recommended reading

  1. Jeffery PG (1975) Chemical methods of rock analysis. Pergamon Press, OxfordGoogle Scholar
  2. Maxwell JA (1968) Rock and mineral analysis. Wiley-Interscience, New YorkGoogle Scholar
  3. Potts PJ (1987) A handbook of silicate rock analysis. Blackie, Glasgow, Chap 2, pp 47–76CrossRefGoogle Scholar
  4. Wilson AD (1955) Determination of ferrous iron in rocks and minerals. Bull Geol Surv GB 9: 56–58Google Scholar

References

  1. Bernas B (1968) A new method for decomposition and comprehensive analysis of sihcates by atomic absorption spectrometry. Anal Chem 40: 1682–1686CrossRefGoogle Scholar
  2. Buckley DE, Cranston RE (1971) Atomic absorption analysis of 18 elements from a single decomposition of aluminosilicate. Chem Geol 7: 273–284CrossRefGoogle Scholar
  3. Ebdon L (1982) An introduction to atomic absorption spectroscopy. Heydon, LondonGoogle Scholar
  4. Slavin W (1982) Atomic absorption spectroscopy, the present and the future. Anal Chem 54: 685A–694ACrossRefGoogle Scholar
  5. Potts PJ (1987) A handbook of sihcate rock analysis chap 4: Atomic absorption spectrometry, Blackie, Glasgow, pp 106–152Google Scholar
  6. Sen Gupta JG (1985) Determination of the rare earths, yttrium and scandium in sihcate rocks and four new geological reference materials by electrothermal atomization from graphite and tantalum surfaces. Talanta 32: 1–6CrossRefGoogle Scholar

References

  1. Church SE (1981) Multi-element analysis of fifty-four geochemical reference samples using inductively coupled plasma-atomic emission spectrometry. Geostand Newslett 5: 133–160CrossRefGoogle Scholar
  2. Crock JG, Lichte FE, Briggs PH (1983) Determination of elements in National Bureau of Standards’ Geological Reference Materials SRM 278 Obsidian and SRM 688 Basalt by inductively coupled argon plasma-atomic emission spectrometry. Geostand Newslett 7: 335–340CrossRefGoogle Scholar
  3. Crock JG, Lichte FE, Riddle GO, Beech CL (1986) Separation and preconcentration of the rare earth elements and yttrium from geological materials by ion-exchange and sequential acid elution. Talanta 33: 601–606CrossRefGoogle Scholar
  4. Fassel VA, Kniseley R (1974) Inductively coupled plasma-optical emission spectroscopy. Anal Chem 46: 1110A–1120AGoogle Scholar
  5. Fries T, Lamothe PJ (1984) Determination of rare-earth elements, yttrium, and scandium in manganese nodules by inductively coupled argon-plasma emission spectrometry. Anal Chim Acta 159: 329–336CrossRefGoogle Scholar
  6. Lichte FE, Gohghtly DW, Lamothe PJ (1987) Inductively coupled plasma-atomic emission spectrometry. In: Baedecker PA (ed) Methods for Geochemical Analysis. US Geol Surv Bull 1770: Bl-B10Google Scholar
  7. Montaser A, Gohghtly DW (eds) (1987) Inductively coupled plasmas in analytical atomic spectroscopy. VCH Pubhshers, New York, 660 ppGoogle Scholar
  8. Motooka JM (1988) An exploration geochemical technique for the determination of pre-concentrated organometallic hahdes by ICP-AES. Appl Spectrosc 42: 1293–1296CrossRefGoogle Scholar
  9. Thompson M, Walsh JN (1989) A handbook of inductively coupled plasma spectrometry, 2nd edn. Blackie, London, 316 ppCrossRefGoogle Scholar
  10. Thompson M, Simon C, Bret L (1989) Cahbration studies in laser ablation microprobe-inductively coupled plasma atomic emission spectrometry. J At Spectrosc 4: 11–16CrossRefGoogle Scholar
  11. Walsh JN, Howie RA (1986) Recent developments in analytical methods: uses of inductively coupled plasma source spectrometry in apphed geology and geochemistry. Appl Geochem 1: 161–171CrossRefGoogle Scholar
  12. Winge RK, Fassel VA, Peterson VJ, Floyd MA (1985) Inductively coupled plasma-atomic emission spectrometry; an atlas of spectral information. Elsevier, New York, 584 ppGoogle Scholar

References

  1. Bertin EP (1978) Introduction to X-ray spectrometric analysis. Plenum Press, New YorkGoogle Scholar
  2. Hannaker P, Haukka N, Sen SK (1984) Comparative study of ICP-AES and XRF analysis of major and minor constituents in geological materials. Chem Geol 42: 319–324CrossRefGoogle Scholar
  3. Heinrich KFJ, Newbury DE, Mykblebust RL, Fior CE (eds) (1981) Energy dispersive X-ray spectrometry. US Natl Bur Stand, Spec Publ, GaithersburgGoogle Scholar
  4. Hutton JT, Elliot SM (1980) An accurate XRF method for the analysis of geochemical exploration samples for major and trace elements using one glass disc. Chem Geol 29: 1–11CrossRefGoogle Scholar
  5. Sutton SR, Rivers ML, Jones KW, Smith JV (1988a) X-ray fluorescence microprobe analysis. In: Synchrotron X-ray sources and new opportunities in the Earth Sciences. Argonne National Lab Techn Report, pp 93–112Google Scholar
  6. Sutton SR, Rivers ML, Smith JV, Jones KW (1988b) Advances in geochemistry and cosmo- chemistry: trace elements microdistributions with the synchrotron X-ray fluorescence microprobe. In X-ray microscopy, vol 56. Springer, Berlin Heidelberg New York, pp 438–441Google Scholar

References

  1. Baedecker PA, McKown DM (1987) Instrumental neutron activation analysis of geochemical samples. US Geol Surv Bull 1770: H1-H14Google Scholar
  2. Baedecker PA, Rowe JJ, Steinnes E (1977) Application of epithermal neutron activation in multielement analysis of silicate rocks employing both coaxial Ge(Li) and low energy photon detector systems. J Radioanal Chem 40: 115–146CrossRefGoogle Scholar
  3. Das HA, Faanhof A, Van Der Sloot HA (1989) Radioanalysis in geochemistry. Elsevier, AmsterdamGoogle Scholar
  4. Jacobs JW, Korotev RL, Blanchard DP, Haskin LA (1977) A well tested procedure for instrumental neutron activation analysis of silicate rocks and minerals. J Radioanal Chem 40: 93–114CrossRefGoogle Scholar
  5. Koeberl C (1988) Short time activation analysis in geo- and cosmochemistry. J Trace Microprobe Techniques 6: 501–520Google Scholar
  6. Koeberl C, Kluger F, Kiesl W (1987) Rare earth element determinations at ultratrace abundance levels in geologic materials. J Radioanal Nucl Chem 112: 481–487CrossRefGoogle Scholar
  7. Laul JC (1979) Neutron activation analysis of geological materials. Atom Energ Rev 17: 603–695Google Scholar
  8. Wandless GA (1987) Radiochemical neutron activation analysis of geologic materials. US Geol Surv Bull 1770: J1-J8Google Scholar

References

  1. Amiel S (1981) Neutron counting in activation analysis. In: Amiel S (ed) Nondestructive activation analysis. Studies in Analytical Chemistry 3, Elsevier, Amsterdam, pp 43–52Google Scholar
  2. Das HA, Faanhof A, Van der Sloot HA (1989) Radioanalysis in geochemistry. Elsevier, AmsterdamGoogle Scholar
  3. Minor MM Hensley WK, Denton MM, Garcia SP (1982) An automated activation analysis system. J Radioanal Nucl Chem 70(1–2): 459–471Google Scholar
  4. Shenberg C, Nir-El Y, Alfassi Z, Shiloni Y (1987) Rapid and simultaneous determination of U, F, Al, Ca and V in phosphate rock by a combination of delayed neutron and y-ray spectrometry techniques. J Radioanal Nucl Chem 114(2): 367–377CrossRefGoogle Scholar
  5. Tolgyessy J, Kyrs M (1989) Radioanalytical chemistry volume I. Elhs Horwood, ChichesterGoogle Scholar

References

  1. Allégre CJ, Hart SR, Minster JF (1983) Chemical structure and evolution of the mantle and continents determined by inversion of Sr and Nd isotopic data. I, Theoretical methods. Earth Planet Sci Lett 66: 177–190Google Scholar
  2. Cameron AE, Eggers DF Jr (1948) An ion “velocitron”. Rev Sci Instrum 19: 605–607CrossRefGoogle Scholar
  3. Clayton RN, Mayeda TK (1963) The use of bromine pentafluoride in the extraction of oxygen from silicates for isotopic analysis. Geochim Cosmochim Acta 27: 43–52CrossRefGoogle Scholar
  4. Conzemius RJ, Capellan JM (1980) A review of the application to solids of the laser ion source in mass spectrometry. Int J Mass Spectrom Ion Phys 34: 197–271CrossRefGoogle Scholar
  5. Craig H, Lupton JE (1976) Primordial neon, helium and hydrogen in mid-oceanic basaltic glasses. Earth Planet Sci Lett 31: 369–385CrossRefGoogle Scholar
  6. Damoth DC (1964) Recent advances in time-of-flight mass spectrometry. In: Reilly CN (ed) Advances in analytical chemistry and instrumentation. Wiley-Interscience, New York, pp 371–410Google Scholar
  7. Dawson PH (ed) (1976) Quadrupole mass spectrometry and its apphcations. Elsevier, Amsterdam pp 349Google Scholar
  8. Des Marais DJ, Moore JG (1984) Carbon and its isotopes in mid ocean basaltic glasses. Earth Planet Sci Lett 69: 43–57CrossRefGoogle Scholar
  9. Edwards RL, Chen JH, Ku TL, Wasserburg GJ (1987) Precise timing of the last interglacial period from mass-spectrometric determination of Thorium-230 in corals. Science 236: 1547–1553CrossRefGoogle Scholar
  10. Evans CA Jr (1972) Secondary ion mass analysis: a technique for three-dimensional characterisation. Anal Chem 44: 67A–80ACrossRefGoogle Scholar
  11. Faure G (1986) Principles of isotope geology. New York, Wiley, pp 589Google Scholar
  12. Guichard F, Reyss JH, Yokoyama Y (1978) Grov/th rate of a manganese nodule measured with 10Be and 26Al. Nature 272: 155–156CrossRefGoogle Scholar
  13. Halliday AN et al. (1994) Inductively coupled plasma magnetic sector multi-collector mass spectrometry. ICOG 8, Abs Vol USGS Circular 1107, pl22Google Scholar
  14. Jacobsen SB (1988) Isotopic and chemical constraints on mantle-crust evolution. Geochim Cosmochim Acta 52: 1341–1350CrossRefGoogle Scholar
  15. Kyser TK, O’Neill JR (1984) Hydrogen isotope systematics of submarine basalts. Geochim Cosmochim Acta 48: 2123–2133CrossRefGoogle Scholar
  16. Morris JD, Leeman WP, Tera F (1990) The subducted component in island arc lavas: constraints from Be isotopes and B-Be systematics. Nature 344: 31–36CrossRefGoogle Scholar
  17. Nier AO (1940) A mass-spectrometer for routine isotope abundance measurements. Rev Sci Instrum 11: 212–216CrossRefGoogle Scholar
  18. Pillinger CT (1984) Light element stable isotopes in meteorites — from grams to picograms. Geochim Cosmochim Acta 48: 2739–2766CrossRefGoogle Scholar
  19. Potts PJ (1987) A handbook of silicate rock analysis. Glasgow, Blackie, pp 622Google Scholar
  20. Ueda A, Sakai H (1983) Simultaneous determinations of the concentrations and isotope ratio of sulphate-sulphur, sulphide-sulphur and carbonate-carbon in geological samples. Geochim J 17: 185–196CrossRefGoogle Scholar
  21. Watson JT (1986) Introduction to mass spectrometry. Raven Press, New York, pp 351Google Scholar

References

  1. Date AR, Gray AL (eds) (1989) Applications of inductively coupled plasma mass spectrometry, Blackie, Glasgow, 254 ppGoogle Scholar
  2. Gladney ES, O’Malley BT, Roelandts I, Gills TE (1987) Compilation of elemental concentration data for NBS clinical, biological, geological and environmental standard reference materials. NBS Spec Publ 260–111, 547 ppGoogle Scholar
  3. Gray AL, Williams JG (1987) System optimisation and the effect on polyatomic, oxide and doubly charged ion response of a commercial inductively coupled plasma mass spectrometry instrument. J Anal At Spectrom 2: 599–606CrossRefGoogle Scholar
  4. Gregoire DC (1987) Determination of boron isotopes in geological materials by inductively coupled plasma mass spectrometry. Anal Chem 59: 2479–2484CrossRefGoogle Scholar
  5. Hall GEM, Pelchat JC, Loop J (1990) Determination of zirconium, niobium, hafnium and tantalum at low levels in geological materials by inductively coupled plasma mass spectrometry. J Anal At Spectrom 5: 339–349CrossRefGoogle Scholar
  6. Jarvis KE (1990) A critical evaluation of two sample preparation techniques for low level determination of some geologically incompatible elements by inductively coupled plasma mass spectrometry. Chem Geol 83: 89–103CrossRefGoogle Scholar
  7. Jarvis KE, Williams JG (1989) The analysis of geological samples by slurry nebuhsation inductively coupled plasma mass spectrometry (ICP-MS). Chem Geol 77: 53–63Google Scholar
  8. Jarvis KE, Williams, JG (1993) Laser ablation inductively coupled plasma MASS Spectrometry (LA-ICP-ms): a rapid technique for the direct, quantitative determination of major, trace REE in geological samples. Chem GEOL 106: 251–262CrossRefGoogle Scholar
  9. Jarvis KE, Gray AL, Houk RS (1992) A handbook of inductively coupled plasma mass spectrometry. Blackie, Glasgow, 375 ppGoogle Scholar
  10. Wilhams JG, Gray AL (1988) High dissolved solids and ICP-MS: are they compatible? Anal Proc 25: 385–388Google Scholar

References

  1. Grimshaw RW, Harland CE (1975) Ion-exchange: introduction to theory and practice. The Chemical Society, LondonGoogle Scholar
  2. Miyazaki A, Barnes RM (1981) Complexation of some transition metals, rare earth elements and thorium with poly(dithiocarbamate) chelating resin. Anal Chem 53: 299–304CrossRefGoogle Scholar
  3. Nadkarni RA, Morrison GH (1974) Determination of the noble metals in geological materials by neutron activation analysis. Anal Chem 46: 232–236CrossRefGoogle Scholar
  4. Paterson R (1970) An introduction to ion exchange. Heyden, LondonGoogle Scholar
  5. Potts PJ (1987) A handbook of sihcate rock analysis. Blackie, Glasgow, chap 14, pp 472–485CrossRefGoogle Scholar
  6. Walsh JN, Buckley F, Barker J (1981) The simultaneous determination of the rare earth elements in rocks using inductively coupled plasma source spectrometry. Chem Geol 33: 141–153CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • P. J. Potts
  • J. G. Crock
  • P. H. Briggs
  • V. P. Afonin
  • Chr. Koeberl
  • S. J. Parry
  • P. F. McDermott
  • K. E. Jarvis

There are no affiliations available

Personalised recommendations