General Results of Crystal Structure Analysis of Minerals

  • V. A. Drits
  • F. Liebau
  • Ch. Prewitt
  • V. A. Koptsik
  • W. H. Baur
  • D. Kassner
  • G. D. Price
  • V. S. Urusov
  • V. G. Tsirelson
  • O. V. Frank-Kamenetskaya
  • S. K. Filatov
  • R. M. Hazen

Abstract

The discovery of X-ray diffraction (XRD) in 1912 (Friedrich et al. 1912) marked the beginning of a new era in the study of the atomic structure of crystals, as it became possible to “visualize” the arrangement of atoms in the unit cell repeated periodically over all the crystal volume. From then on, numerous structure studies have ensured deep insight into the complex and versatile world of minerals. These studies are of tremendous scientific and practical significance, as the knowledge of crystal structure is indispensable for reliable interpretation of data on chemical composition and physicochemical properties of minerals, for predicting and synthesizing crystals having specific properties, and for analyzing the formation and transformation conditions of minerals in various environments.

Keywords

Anisotropy Arsenate Boron Fluoride Uranium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberti A, Gottardi G (1988) Z Kristallogr 184: 49–61CrossRefGoogle Scholar
  2. Angell CA, Clarke JHR, Woodcock LV (1981) Adv Chem Physics 48: 397–453CrossRefGoogle Scholar
  3. Bachmann R, Kohler H, Schultz H, Weber H-P (1985) Acta Cryst A41: 35–40CrossRefGoogle Scholar
  4. Bärlocher C, Hepp A, Meier WM (1977) DLS-76, a program for the simulation of crystal structures by geometric refinement. Institut für Kristallographie und Petrographie, ETH Zürich Bärnighausen (1980) Comm Math Chem 9: 139–175Google Scholar
  5. Baronnet A (1980) Current Topics Material Sei 5: 447–548Google Scholar
  6. Belov NV (1961) Crystal chemistry of large-cation silicates. Consultants Bureau, New York, 1963Google Scholar
  7. Bragg WL (1913) Proc R Soc London Ser A, 89: 248–277CrossRefGoogle Scholar
  8. Brown ID (1977) Acta Cryst B33: 1305–1310CrossRefGoogle Scholar
  9. Buerger MJ (1971) Trans Amer Cryst Assoc 7: 1–23Google Scholar
  10. Cameron M, Papike T (1980) MSA Review Miner 7: 5–92Google Scholar
  11. Carpenter M, Salje E (1989) Miner, Mag 53: 483–504CrossRefGoogle Scholar
  12. Chiari G (1990) Acta Cryst B46: 717–723CrossRefGoogle Scholar
  13. Clearfield A, Rudolf PR (1987) Trans Amer Cryst Assoc 23: 35–49Google Scholar
  14. Coppens P (1982) In: ( Coppens P, Hall M eds) Electron distributions and the chemical bond, Plenum Press, New York, 61–92CrossRefGoogle Scholar
  15. Cowley J (1953) Acta Cryst 6: 516–521CrossRefGoogle Scholar
  16. Czank M, Liebau F (1980) Phys Chem Minerals 6: 85–93CrossRefGoogle Scholar
  17. Dornberger-Schiff K (1964) Grundzüge einer Theorie der OD-Strukturen aus Schichten. Abh Dtsch Akad Wiss Kl f Chem 3, Akademie-Verlag, BerlinGoogle Scholar
  18. Downing KH, Meisheng H, Wenk H-R, O’Keefe MA (1990) Nature 348: 525–528CrossRefGoogle Scholar
  19. Drits VA (1987) Electron diffraction and High-resolution electron microscopy of mineral structures. Springer, HeidelbergCrossRefGoogle Scholar
  20. Drits VA, Tchoubar C (1990) X-ray diffraction by disordered lamellar structures. Springer, HeidelbergCrossRefGoogle Scholar
  21. Engelhardt G, Michel D (1987) High-resolution solid-state NMR of silicates and zeolites. Wiley, ChichesterGoogle Scholar
  22. Ferey G (1990) Acta Cryst A46 Supplement, C243-C244 Finger LW (1989) Reviews Miner 20: 309–331Google Scholar
  23. Friedrich W, Knipping P, von Laue M (1912) Sitzungsber Math Phys Kl K Bayer Akad Wiss München, 303–322Google Scholar
  24. Fuess H (1979) In: (Fluck E, Goldanskii VI ) Modern physics in chemistry. Academic Press, LondonGoogle Scholar
  25. Fyfe CA (1983) Solid state NMR for chemists. CFC Press, GuelphGoogle Scholar
  26. Glidewell C (1975) Inorg Chim Acta 12: 219–227CrossRefGoogle Scholar
  27. Gibbs GV (1982) Amer Miner 67: 421–450Google Scholar
  28. Greaves GN (1990) In: ( Uhlmann DR, Kreidl NF .) Glass - science and technology Vol. 4B, Chapter 1Google Scholar
  29. Guinier A, Bokii GB, Boll-Dornberger K, Cowley JM, Durovic S, Jagodzinski H, Krishna P, de Wolff PM, Zvyagin BB, Cox DE, Goodman P, Hahn Th, Kuchitsu K, Abrahams SC (1984) Acta Cryst A40: 399–404CrossRefGoogle Scholar
  30. Hauptman H, Karle J (1953) Acta Cryst 6: 136–141CrossRefGoogle Scholar
  31. Helliwell JR, Habash J, Cruickshank DWJ, Harding MM, Greenhough TJ, Campbell JW, Clifton IJ, Elder M, Machin PA, Papiz MZ, Zurek S (1989) J Appl Cryst 22: 483–497CrossRefGoogle Scholar
  32. Karle J, Hauptman H (1953) Acta Cryst 6: 131–135CrossRefGoogle Scholar
  33. Klapper H (1991) In: (Karl N ed.) Crystals growth, properties and characterization Vol. 13: 2–53Google Scholar
  34. Kostov I, Minceva-Stefanova J (1982) Sulfide minerals. Schweizerbart, StuttgartGoogle Scholar
  35. Kroll H, Maurer H, Stöckelmann D, Beckers W, Fulst J, Krüsemann R, Stutenbäumer Th, Zingel A (1992) Z Kristallogr 199: 49–66CrossRefGoogle Scholar
  36. Lehmann MS, Norlund Christensen A, Nielsen M, Feidenhans’l R, Cox DE (1988) J Appl Cryst 21: 905–910Google Scholar
  37. Lengeier B (1990) In: X-ray absorption and reflection in the hard X-ray range. Summer School “Enrico Fermi” 12–22.7. 88, Varenna, Italy (. Campagna M, Rosei R) North Holland Publ. Co, Amsterdam, 157–202Google Scholar
  38. Lengeier B (1990) Adv Mater 2: 123–131CrossRefGoogle Scholar
  39. Liebau F (1983) Fortschr Miner 61: 29–84Google Scholar
  40. Liebau F (1985) Structural chemistry of silicates. Springer, BerlinGoogle Scholar
  41. Lytle FW (1989) In: Beijing 1988 (Winick H, Xian D, Ye M-H, Hung T) Applications of synchrotron radiation Gordon and Breach, New York, 135–223Google Scholar
  42. McCusker LB (1988) J Appl Cryst 21: 305–310CrossRefGoogle Scholar
  43. Meilini M, Ferraris G, Compagnoni R (1985) Amer Miner 70: 773–781Google Scholar
  44. Murdoch JB, Stebbins JF, Carmichael ISE (1985) Amer Miner 70: 332–343Google Scholar
  45. Mysen BO, Virgo D (1989) Amer Miner 74: 58–76Google Scholar
  46. Mysen BO, Virgo D, Seifert FA (1982) Reviews Geophys 20: 353–383CrossRefGoogle Scholar
  47. Oestrike R, Kirkpatrick RJ (1988) Amer Miner 73: 534–546Google Scholar
  48. Palmer DC, Bismayer U, Salje E (1990) Phys Chem Minerals 17: 259–265Google Scholar
  49. Palmer DC, Salje E (1990) Phys Chem Minerals 17: 444–452Google Scholar
  50. Patterson AL (1934) Phys Rev 46: 372–376CrossRefGoogle Scholar
  51. Post JE, Bish DL (1989) Reviews Miner 20: 277–308Google Scholar
  52. Rietveld HM (1969) J Appl Cryst 2: 65–71CrossRefGoogle Scholar
  53. Ringwood AE (1975) Composition and petrology of the Earth’s mantle. McGraw-Hill, New York Sayre D (1952) Acta Cryst 5: 60–65Google Scholar
  54. Schultz AJ (1987) Trans Amer Cryst Assoc 23: 61–69Google Scholar
  55. Shannon RD (1976) Acta Cryst A32: 751–767CrossRefGoogle Scholar
  56. Shannon RD, Prewitt CT (1969) Acta Cryst B25: 925–946CrossRefGoogle Scholar
  57. Shannon RD, Prewitt CT (1970) Acta Cryst B26: 1046–1048CrossRefGoogle Scholar
  58. Soules TF (1990) In: (Uhlmann DR, Kreidl NJ,) Glass - science and technology. Vol. 4A Chapter 6, Academic Press, New York Stallworth PE, Bray PJ (1990) In: (Uhlmann DR, Kreidl NJ,) Glass - science and technology. Vol. 4B Chapter 2 Takeuchi Y, Koto K (1977) Miner J 8: 272–285Google Scholar
  59. Taylor M, Brown GE (1979) Geochim Cosmochim Acta 43: 61–75, 1467–1473CrossRefGoogle Scholar
  60. Thompson Jr, JB (1981) Reviews Miner 9A: 141–188Google Scholar
  61. Vainshtein BK (1964) Structure analysis by electron diffraction. Pergamon Press, OxfordGoogle Scholar
  62. Veblen DR (1981) Reviews Miner 9A: 189–236Google Scholar
  63. Veblen DR (1991) Amer Miner 76: 801–826Google Scholar
  64. Veblen DR, Burnham CW (1977) Science 198: 359–365CrossRefGoogle Scholar
  65. Wal RJ van der, Vos A, Kirfel A (1987) Acta Cryst B43: 132–143Google Scholar
  66. White JW (1987) Trans Amer Cryst Assoc 23: 1–17Google Scholar
  67. Winkler B, Buehrer W (1990) Phys Chem Minerals 17: 453–461CrossRefGoogle Scholar
  68. Woolfson MM (1987) Acta Cryst A43: 593–612CrossRefGoogle Scholar
  69. Zvyagin BB (1967) Electron-diffraction analysis of clay mineral structures. Plenum Press, New YorkGoogle Scholar
  70. Zvyagin BB (1993) Crystallogr Report 38: 54–60Google Scholar
  71. Brown H, Bulov R, Neubiiser J, Wondratschek H, Zassenhaus H (1978) Crystallography groups of four-dimensional space. Wiley and Sons, New YorkGoogle Scholar
  72. Grebille D, Weigel D, Veysseyre R, Phan T (1990) Crystallography, geometry and physics in higher dimensions. VII. The different types of symbols of the 371 mono-incommensurate superspace groups. Acta Cryst A 46: 234–240CrossRefGoogle Scholar
  73. Hahn T (ed) ( 1983, 1987) International tables for crystallography, vol 1. Space-group symmetry. Birmingham, Kinoch PressGoogle Scholar
  74. Hargittai I, Hargittai M (1986) Symmetry through the eyes of a chemist. VCH Verlagsgesells- chaft, WeinheimGoogle Scholar
  75. Hargittai I, Vainshtein BK, Udalova VV (eds) (1988) Crystal symmetries. Shubnikov centennial papers. Comput Math Appl 16: 351–669Google Scholar
  76. Janssen T (1988) Aperiodic crystals: a contradicto in terminis. Phys Rep Rev Sect Phys Lett 168: 55–113Google Scholar
  77. Koptsik VA (1966) Shubnikov groups. The reference book on symmetry and physical properties of crystal structures. Moscow Univ Publ House (in Russian)Google Scholar
  78. Koptsik VA (1975) Advances in the theoretical crystallography. Colour symmetry of defect crystals. Kristall Technik 10: 231–245CrossRefGoogle Scholar
  79. Koptsik VA (1980) The symmetry of imperfect crystals. On the theory of structure phase transition in crystals with internal degress of freedom: MATCH, Informal Commun Math Chem 8: 3–20; 21–35Google Scholar
  80. Koptsik VA (1983) New group theoretical methods in physics of imperfect crystals and the theory of structure phase transitions. Symmetry principles in physics: J Phys C Sol State Phys 16: 1–22; 23–35Google Scholar
  81. Koptsik VA (1988) Generalized symmetry in crystal physics. Comput Math Appl 16: 407–424CrossRefGoogle Scholar
  82. KoptsikVA (1991) Crystallography of quasicrystals: The problem of restoration of broken symmetry. In: Manko V and Dodonov (eds) Lecture notes in physics. Springer, Berlin Heidelberg New York, No 382: 588–600Google Scholar
  83. Kotzev JN, Alexandrova DA (1988) Full tables of colour space groups with colour-preserving translations. Acta Cryst A 44: 1082–1096CrossRefGoogle Scholar
  84. Kovalev OV (1987) Irreducible representations of the space groups. Gordon and Breach, New York ( 1964 ); Irreducible representations, co-representations and induced representations of the space groups. Nauka, Moscow (in Russian)Google Scholar
  85. Shubnikov AV, Koptsik VA (1974) Symmetry in science and art. Plenum Press, New York (translated from Russian edn. Nauka, Moscow 1972 )Google Scholar
  86. Smirnov VP, Evarestov RA (1988) Quantum chemistry of solids. The applications of symmetry methods. Vysshaiya Schkola, Moscow (in Russian)Google Scholar
  87. Talis AL, Koptsik VA (1990) Wreath algorithms for constructing of modular crystal structures. Sov Cryst 35: 1347–1353Google Scholar
  88. Vainstein BK (1979) Contemporary crystallography, vol 1. Symmetry and structures of crystals. Nauka, Moscow (in Russian)Google Scholar
  89. Wolff PM de, Janssen T, Janner A (1981) The superspace groups for incommensurate crystal structures with one-dimensional modulation: Acta Cryst A 37: 625–636Google Scholar
  90. Zamorzaev AM, Galarsky EI, Palistrant APh (1978) Colour symmetry: its generalizations and applications. Shtiinza, KishinevGoogle Scholar
  91. Alberti A, Gottardi G (1988) The determination of the Al-content in the tetrahedra of framework silicates. Z Krist 184: 49–61CrossRefGoogle Scholar
  92. Baur WH (1970) Bond length variation and distorted coordination polyhedra in inorganic crystals. Trans Am Cryst Assoc 6: 129–155Google Scholar
  93. Baur WH (1978) Variation of mean Si-O bond lengths in silicon-oxygen tetrahedra. Acta Cryst B34: 1751–1756CrossRefGoogle Scholar
  94. Baur WH (1981) Interatomic distance predictions for computer simulation of crystal structures. In: O’Keeffe M, Navrotsky A (eds) Structure and bonding in crystals, vol 2. Academic Press, New York, pp 31–52Google Scholar
  95. Baur WH, Fischer RX, Shannon RD, Staley RH, Vega AJ, Abrams L, Corbin DR, Jorgensen JD (1987) Neutron powder diffraction study and physical characterization of zeolite D-RHO shallow-bed calcined at 773 K and 873 K. Z Krist 179: 281–304CrossRefGoogle Scholar
  96. Bersuker IB (1984) The Jahn-Teller effect and vibronic interactions in modern chemistry. Plenum, New YorkGoogle Scholar
  97. Bish DL, Post JE (eds) (1989) Modern powder diffraction. Reviews in mineralogy, vol 20, Mineralogical Society of America, Washington, DCGoogle Scholar
  98. Brown ID (1987) Recent developments in the bond valence model of inorganic bonding. Phys Chem Mineral 15: 30–34CrossRefGoogle Scholar
  99. Brown ID, Shannon RD (1973) Empirical bond-strength-bond-length curves for oxides. Acta Cryst A29: 266–282CrossRefGoogle Scholar
  100. Burdett JK (1980) Molecular shapes. Wiley, New YorkGoogle Scholar
  101. Burdett JK, McLarnan TJ (1984) An orbital interpretation of Pauling’s rules. Am Mineral 69: 601–621Google Scholar
  102. Cruickshank DWJ (1985) A reassessment of dn-pn bonding in the tetrahedral oxyanions of second-row atoms. J Mol Struct 130: 177–191CrossRefGoogle Scholar
  103. Liebau F (1985) Structual chemistry of silicates. Springer, Berlin Heidelberg New York Meier MW, Villiger H (1971) Die Methode der Abstandsverfeinerung zur Bestimmung der Atomkoordinaten idealisierter Gerüststrukturen. Z Krist 129: 411–423Google Scholar
  104. O’Keeffe M (1989) The prediction and interpretation of bond lengths in crystals. Struct Bond 71: 161–190Google Scholar
  105. Pauling L (1960) The nature of the chemical bond, 3rd edn. Cornell Univ Press, Ithaca Smith JV, Bailey SW (1963) Second review of Al-O and Si-O tetrahedral distances. Acta Cryst 16: 801–811Google Scholar
  106. Stout GH, Jensen LH (1989) X-ray structure determination, 2nd edn. Wiley, New YorkGoogle Scholar
  107. Wells AF (1984) Structural inorganic chemistry, 5th edn. Clarendon, OxfordGoogle Scholar
  108. Zachariasen WH, Penneman RA (1980) Application of bond length-bond strength analysis to 5f element fluorides. J Less-Comm Met 69: 369–377CrossRefGoogle Scholar
  109. Baur WH (1977) Computer simulation of crystal structures. Phys Chem Mineral 2: 3–20CrossRefGoogle Scholar
  110. Baur WH, Kassner D, Kim CH, Sieber NHW (1990) Flexibility and distortion of the framework of natrolite: crystal structures of ion-exchanged natrolites. Eur J Mineral 2: 761–769Google Scholar
  111. Bragg WL (1920) The arrangement of atoms in crystals. Philos Mag [6] 40: 169–189Google Scholar
  112. Dowty E (1990) ATOMS, atomic structure display software. Shape Software, Kingsport Fischer RX (1985) STRUPLO84, a FORTRAN program for crystal structure illustrations in polyhedral representation. J Appl Cryst 18: 258–262CrossRefGoogle Scholar
  113. Fischer RX, le Lirzin A, Kassner D, Rudinger B (1991) STRUPLO’90, eine neue Version des Fortran Plotprogramms zur Darstellung von Kristallstrukturen. Z Krist Suppl 3: 75Google Scholar
  114. Hawthorne FC, Smith JV (1988) Enumeration of four-connected three-dimensional nets and classification of framework silicates. Combination of zigzag chains with 63, 3.122, 4.82, 4.6.12, and (52.8)2(5.82)1 nets. Z Krist 183: 213–231Google Scholar
  115. Johnson CK (1970) ORTEP: a FORTRAN thermal-ellipsoid plot program for crystal structure illustrations. ORNL–3794, Oak Ridge National Laboratory, Oak RidgeGoogle Scholar
  116. Liebau F (1985) Structural Chemistry of Silicates. Springer, Berlin Heidelberg New YorkGoogle Scholar
  117. Meier WM, Olson DH (1987) Atlas of zeolite structure types, 2nd edn. Butterworths, LondonGoogle Scholar
  118. Pauling L, Sturdivant JH (1928) The crystal structure of brookite. Z Krist 68: 239–256Google Scholar
  119. Pauling L (1960) The nature of the chemical bond, 3rd edn. Cornell Univ Press, IthacaGoogle Scholar
  120. Smith DK (1989) Computer analysis of diffraction data. In: Bish DL, Post JE (eds) Modern powder diffraction. Reviews in mineralogy, vol 20, Mineralogical Society of America, Washington, DC, pp 183–216Google Scholar
  121. Stewart JM, Hall SR (eds) (1990) XTAL System of crystallographic programs, release 3.0. Universities of Maryland and Western Australia, PerthGoogle Scholar
  122. Tillmanns E, Hofmeister W, Baur WH (1985) Variations on the theme of closest packing: the structural chemistry of barium titanate compounds. J Sol State Chem 58: 14–28CrossRefGoogle Scholar
  123. Wells AF (1977) Three-dimensional nets and polyhedra. Wiley, New YorkGoogle Scholar
  124. Wells AF (1984) Structural inorganic chemistry, 5th edn. Clarendon, OxfordGoogle Scholar
  125. Burnham CW (1985) Mineral structure energetics and modelling using the ionic approximation. Reviews in Mineralogy 14, Springer, Berlin Heidelberg New York, pp 347–388Google Scholar
  126. Catlow CRA, Mackrodt WC (1982) Computer simulation of solids. Lecture Notes in Physics, 166, Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  127. Catlow CRA, Price GD (1990) Computer modelling of solid-state inorganic materials. Nature 347: 243–248CrossRefGoogle Scholar
  128. Catti M (1986) Theoretical computation of the physical properties of mantle minerals. In: Saxena S (ed) Advances in physical geochemistry 6. Springer, Berlin Heidelberg New YorkGoogle Scholar
  129. Matsui M (1986) Computer simulations of structures and elastic constants of minerals. J Mineral Soc Jpn 17: 169–179CrossRefGoogle Scholar
  130. Parker SC, Price GD (1989) Computer modelling of phase transitions in minerals. In: Catlow CRA (ed) Advances in solid state chemistry, London, AI Press 1, pp 295–327Google Scholar
  131. Urusov VS, Dubrovinsky LS (1989) Computer modelling of crystal structures and properties of minerals. Moscow Univ Press, Moscow (in Russian)Google Scholar
  132. Gibbs (1982) Molecules as models for bonding in silicates. Am Mineral 67: 421–450Google Scholar
  133. Kirfel A, Eichorn k (1990) Accurate structure analysis with synchrotron radiation. Acta Cryst 46: 271–284Google Scholar
  134. Lewis J, Schwarzenbach D, Flack HD (1982) Electric field gradients and charge density in corundum, a-Al2O3. Acta Cryst A38: 733–739Google Scholar
  135. Marumo F, Isobe M, Saito Y et al (1974) Electron-density distributions in crystals of Ni2SiO4.Google Scholar
  136. Acta Cryst B30: 1904–1906 Marumo F, Isobe M, Akimoto S (1977) Electron-density distributions in crystals of y-Fe2SiO4 and y-Co2SiO4. Acta Cryst B30: 713–716Google Scholar
  137. Sasaki S, Takeuchi Y, Fujino K, Akimoto S (1982) Electron-density distribution of three orthopyroxenes, Mg2Si2O6, Co2Si2O6 and Fe2Si2O6. Z Krist 158: 279–297Google Scholar
  138. Spackman MA, Hill RJ, Gibbs GV (1987) Exploration of structure and bonding in stishovite with Fourier and pseudoatom refinement methods using single-crystal and powder X-ray diffraction data. Phys Chem Mineral 142: 139–150CrossRefGoogle Scholar
  139. Tsirelson VG, Ozerov RP (1994) Electron density and bonding in crystals. Adam Hilger, BristolGoogle Scholar
  140. Tsirelson VG, Evdokimova OA, Belokoneva EL, Urusov VS (1990) Electron density distribution and bonding in silicates. Phys Chem Mineral 17: 275–292CrossRefGoogle Scholar
  141. Buerger MJ (1971) Phase transitions. Kristallografiya 16: 1084–1096Google Scholar
  142. Clark SP Jr (ed) (1966) Handbook of physical constants of rocks. Geol Soc Am, vol 97Google Scholar
  143. Filatov SK (1990) High-temperature crystal chemistry. Nedra, Leningrad (in Russian)Google Scholar
  144. Hazen RM (1977) Temperature, pressure and composition: structurally analogous variables. Phys Chem Mineral 1: 83–94CrossRefGoogle Scholar
  145. Hazen RM, Finger LW (1979) Bulk modulus-volume relationship for cation-anion polyhedra. J Geophys Res 84: 6723–6728CrossRefGoogle Scholar
  146. Hazen RM, Finger LW (1981) Bulk moduli and high-pressure crystal structures of rutile-type compounds. J Phys Chem Sol 42: 143–151CrossRefGoogle Scholar
  147. Hazen RM, Finger LW (1982) Comparative crystal chemistry. London Hazen RM, Finger LW (1985) Crystals at high pressure. Sci Am 252: 110–117CrossRefGoogle Scholar
  148. Hazen RM, Prewitt ChT (1977a) Effects of temperature and pressure on interatomic distances in oxygen-based minerals. Am Mineral 62: 309–315Google Scholar
  149. Hazen RM, Prewitt ChT (1977) Linear compressibilities of low albite: high pressure structural implications. Am Mineral 62: 554–558Google Scholar
  150. Krishnan RS, Srinivasan R, Devanarayanan S (1979) Thermal expansion of crystals. Pergamon Press, OxfordGoogle Scholar
  151. Mariathasan JWE, Finger LW, Hazen RM (1985) High-pressure behavior of LaNbO4. Acta Cryst B41: 179–184CrossRefGoogle Scholar
  152. Ringwood AE (1975) Composition and petrology of the Earth’s mantle. McGraw-Hill, New York (Russian translation, 1987, Nedra, Moscow )Google Scholar
  153. Taylor D (1984-) Thermal expansion data. Br Ceram Trans J (1984) 83, 5–9, 32–37, 92–98, 129–133; (1985) 84, 9–14, 121–127, 149–153, 181–188; (1986) 85, 111–114, 147–155; (1987) 86, 1–6; (1988) 87, 39–45, 88–95Google Scholar
  154. Urusov VS, Pushcharovsky DYu (1984) The principles of high-pressure crystal chemistry. Mineral Zh 6: 23–36 (in Russian)Google Scholar
  155. Wyckoff RGJ (1925) The crystal structure of a high-temperature form of cristobalite (SiO2). Am J Sci 9: 448–459CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • V. A. Drits
  • F. Liebau
  • Ch. Prewitt
  • V. A. Koptsik
  • W. H. Baur
  • D. Kassner
  • G. D. Price
  • V. S. Urusov
  • V. G. Tsirelson
  • O. V. Frank-Kamenetskaya
  • S. K. Filatov
  • R. M. Hazen

There are no affiliations available

Personalised recommendations