Skip to main content

Electrical Properties of Minerals

  • Chapter
Advanced Mineralogy
  • 716 Accesses

Abstract

Many transition metal oxides possess intermediate values of electrical conductivity (10−2−102 (Ω-cm)−1) which exhibit Arrhenius behavior with small (≤ 0.5 eV) activation energies. It can be demonstrated that the mobility in such materials is often activated, e.g., conduction is via small polaron hopping (Mason 1988). Among these are the simple oxides of iron and various iron-containing complex oxides, e.g., spinels, olivines, etc. Such materials have both geological and technological importance. The electrical properties are closely related to defect phenomena in these materials, e.g., point defect formation, multi-site exchange reactions, solid solution, etc. The equations below are completely general for all the materials and phenomena considered. A more thorough treatment is given in (Mason 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Chen HC, Gartstein E, Mason TO (1982) Conduction mechanism analysis for Fe1-δO and Co1-δO. J Phys Chem Sol 43: 991–995

    Article  Google Scholar 

  • Dieckmann R, Witt CA, Mason TO (1983) Defects and cation diffusion in magnetite (V): Electrical conduction, cation distribution and point defects in Fe3-δO4. Ber Bunsen-Ges Phys Chem 7: 495–503

    Google Scholar 

  • Dorris SE (1988) The electrical properties and cation distributions of the Fe3O4-Mn3O4 solidsolution. PhD Thesis, Northwestern University, Evanston, IL

    Google Scholar 

  • Dorris SE, Mason TO (1988) The electrical properties and cation valencies in Mn3O4. J Am Ceram Soc 71: 379–385

    Article  Google Scholar 

  • Erickson DS, Mason TO (1985) Nonstoichiometry, cation distribution, and electrical properties in Fe3O4-CoFe2O4 at High Temperature. Sol State Chem 59: 42–53

    Article  Google Scholar 

  • Gartstein E, Mason TO (1982) Reanalysis of wiistite electrical properties. J Am Ceram Soc 65: C-24–C-26

    Google Scholar 

  • Gartstein E, Cohen JB, Mason TO (1986) Defect agglomeration in wustite at high temperatures - II. An electrical conduction model. J Phys Chem Sol 47: 775–781

    Article  Google Scholar 

  • Jonker GH (1968) The application of combined conductivity and Seebeck-effect plots for the analysis of semiconductor properties. Philos Res Rep 23: 131–138

    Google Scholar 

  • Mason TO (1985) High-temperature cation distributions in Fe3O4-FeAl2O4. J Am Ceram Soc 68: C-74–C-75

    Google Scholar 

  • Mason TO (1987) Cation intersite distributions in iron-bearing minerals via electrical conductivity/seebeck effect. Phys Chem Mineral 14: 156–162

    Article  Google Scholar 

  • Mason TO (1988) Electronic behavior and cationic defects in cubic transition metal oxides. Physica B 150: 37–43

    Article  Google Scholar 

  • Mason TO (1991) Defect chemistry of high Tc superconducting cuprates. In: Nowotny J (ed) Electronic ceramic materials. Trans Technol Publ, Zurich, pp 503–536

    Google Scholar 

  • Nell J, Wood BH, Dorris SE, Mason TO (1989a) Jonker-type analysis of small polaron conductors. J Sol State Chem 82: 247–254

    Article  Google Scholar 

  • Nell J, Wood BJ, Mason TO (1989b) Cation distributions in Fe3O4-MgAl2O4 from thermo-power/conductivity measurements. J Phys Chem Mineral 74: 339

    Google Scholar 

  • Nell J, Wood BJ, Mason TO (1989c) High-temperature cation distributions in Fe3O4- MgAl2O4-MgFe2O4 spinels from thermopower and conductivity measurements. Am Mineral 74: 339–351

    Google Scholar 

  • Sockel HG (1974) Defect structure and electrical conductivity of crystalline ferrous silicate. In: Seltzer MS, Martin S, Jaffee RI (eds) Defects and transport in oxides. Battelle Inst Mat Sci Coll 8: 341

    Google Scholar 

  • Su MY, Dorris SE, Mason TO (1988) Defect model and transport at high temperature in YBa2Cu3O6 + y. J Sol State Chem 75: 381–389

    Article  Google Scholar 

  • Sujata K (1989) Kinetics of cation distribution in ferrospinels. PhD Thesis, Northwestern University, Evanston, IL

    Google Scholar 

  • Trestman-Matts A, Dorris SE, Mason TO (1983a) Measurement and interpretation of thermopower in oxides. J Am Ceram Soc 66: 589–592

    Article  Google Scholar 

  • Trestman-Matts A, Dorris SE, Kumarakrishnan S, Mason TO (1983b) Thermoelectric determination of cation distributions in Fe3O4-Fe2TiO4. J Am Ceram Soc 66: 829–834

    Article  Google Scholar 

  • Wu CC, Mason TO (1981) Thermopower measurement of cation distribution in magnetite. J Am Ceram Soc 64: 520–522

    Article  Google Scholar 

  • Wu CC, Kumarakrishnan S, Mason TO (1981) Thermopower composition dependence in ferrospinels. J Sol State 37: 144–150

    Article  Google Scholar 

  • Bykov AB, Chirkin AP, Demyanets LN et al (1990) “Superionic conductors Li3M2(PO4)3, (M = Fe, Sc, Cr): synthesis, structure and electrophysical properties. Sol State Ion 38: 31–52

    Google Scholar 

  • Chebotin VN, Perphiljev MV (1978) Electrochemistry of solid electrolytes. NAUKA (RUSS) Moscow

    Google Scholar 

  • Collongues R, Khan A, Michel D (1979) Superionic conducting oxides. Annu Rev Mater Sci 9: 123–150

    Article  Google Scholar 

  • Goodenough IB, Hong HY-P, Kafalas JA (1976) Fast Na+-ion transport in skeleton structures. Mat Res Bull, vol 11, pp 203–220

    Article  Google Scholar 

  • Hagenmuller P, Gool van W (eds) (1978) Solid electrolytes, Academic Press, New York

    Google Scholar 

  • Schulz H (1980) Crystal structure and ionic conductivity. Rev Chem Miner 17: 229–242

    Google Scholar 

  • Subbarao EC (ed) (1980) Solid electrolytes and their applications, Plenum Press, New York

    Google Scholar 

  • Ginsburg AI (ed) (1985) Methods of mineralogical research. A reference book. Nedra, Moscow, pp 140–177 (in Russian)

    Google Scholar 

  • Krasmikov VT (ed) (1981) Electrical properties of ore minerals in exploration of endogenic deposits. A handbook. Zabaikal Research Institute, Nedra, Leningrad, 91 p (in Russian)

    Google Scholar 

  • Shuey RT (1975) Semiconducting ore minerals. Elsevier, Amsterdam

    Google Scholar 

  • Blom R, Elachi C (1981) Spaceborne and airborne imaging radar observation of sand dunes. J Geophys Res 86: 3061

    Article  Google Scholar 

  • Blom RG, Crippen RJ, Elachi C (1984) Detection of subsurface features in Seasat radar images of Means Valley, Mojave Desert, California. Geology 12: 346–349

    Google Scholar 

  • Carver KR, Elachi C, Ulaby FT (1985) Microwave remote sensing from space. Proc IEEE 73: 970–996

    Article  Google Scholar 

  • Cervelle B (1991) Application of mineralogical constraints to remote sensing. Eur J Mineral 3: 677–688

    Google Scholar 

  • Cervelle B, Moelo Y (1990) Reflected light optics. In: Jambor JL, Vaughan DJ (eds) Advanced microscopic studies of ore minerals. Mineralogical Assoc Canada, Ottawa, pp 87–108

    Google Scholar 

  • Elachi C, Brown WE, Cimino JB et al. (1982) Shuttle imaging radar experiment. Science 218: 996–1003

    Article  Google Scholar 

  • Liu JY, Teng XY, Xiao J-K (1985) Application of the shuttle imaging radar image to land use investigation. Kexue Tongbao 30: 1241–1246

    Google Scholar 

  • McCauley J, Schaber GG, Breed CS et al. (1982) Subsurface valleys and geoarcheology of the eastern Sahara revealed by Shuttle Radar. Science 218: 1004–1020

    Article  Google Scholar 

  • Olhoeft GR (1981) Electrical properties of rocks. In: Touloukian YS (ed) Physical properties of rocks and minerals. McGraw-Hill, New York, pp 257–330

    Google Scholar 

  • Sabins FF (1983) Geologic interpretation of space shuttle radar images of Indonesia. Am Assoc Petrol Geol Bull 67: 2076–2099

    Google Scholar 

  • Teng XY, Shi CQ, Peng HX, Xiao J-K, Lai ZS, Yang BL (1984) Passive microwave radiometry in the Gobi Desert region. Remote Sens Environ 15: 37–46

    Article  Google Scholar 

  • Wang JR (1980) The dielectric properties of soil-water mixtures at microwave frequencies. Radiol Sci 15: 977–985

    Article  Google Scholar 

  • Xiao J-K (1985a) Microwave dielectric properties of minerals and rocks. In: ESA SP-247 (ed) Proc 3rd Int Colloquium on Spectral Signatures of Objects in Remote Sensing, Les Arcs, France, 16-20 Dec. 1985, pp 293–296

    Google Scholar 

  • Xiao J-K (1985b) A study on microwave dielectric properties of solid bitumen. Geochem 4: 67–76

    Google Scholar 

  • Xiao J-K (1990) Dielectric properties of minerals and their applications in microwave remote sensing. Chin J Geochem 9: 169–177

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mason, T.O., Maximov, B.A., Gorbatov, G.A., Cervelle, B., Jin-Kai, X. (1994). Electrical Properties of Minerals. In: Marfunin, A.S. (eds) Advanced Mineralogy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78523-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78523-8_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78525-2

  • Online ISBN: 978-3-642-78523-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics