Structure and Properties of Silicate Glasses and Melts; Theories and Experiment

  • B. O. Mysen
  • D. Virgo

Abstract

The structure of silicate liquids provides a basis for characterization of the physical and chemical properties needed to describe igneous processes. With a sufficient data base of melt structure in binary, ternary and quaternary systems, the principal structural features likely to exist in silicate melts in the bulk compositional range of natural igneous rocks can be identified.

Keywords

Phosphorus Silicate Rutile Compressibility Beryllium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bell RJ, Dean P (1972) Localization of phonons in vitreous silica and related glasses. In: Ellis RWD (ed) Int Conf Phys Non-Cryst Solids, 3 vols. Wiley, LondonGoogle Scholar
  2. Bell RJ, Hibbins-Butler DC (1976) Raman scattering by normal modes in vitreous silica, germania and beryllium fluoride. J Phys Chem 9: 2955–2959Google Scholar
  3. Bihuniak PP, Condrate RA (1981) Structures, spectra and related properties of group IV B-doped vitreous silica. J Non-Cryst Sol 44: 331–344CrossRefGoogle Scholar
  4. Blackwell CS, Patton RL (1984) Aluminum-27 and phosphorous-31 nuclear magnetic resonance studies of aluminophosphate sieves. J Phys Chem 88: 6135–6139CrossRefGoogle Scholar
  5. Bottinga Y, Richet P (1978) Thermodynamics of liquid silicates, a preliminary report. Earth Planet Sci Lett 40: 382–400CrossRefGoogle Scholar
  6. Bottinga Y, Weill DF, Richet P (1981) Thermodynamic modeling of silicate melts. In: Newton RC, Navrotsky A, Wood BZ (eds) Thermodynamics of minerals and melts. Springer, Berlin Hidelberg New York, pp 207–245CrossRefGoogle Scholar
  7. Brown GE, Gibbs GV, Ribbe PH (1969) The nature and variation in length of the Si-O and Al-O bonds in framework silicates. Am Mineral 54: 1044–1061Google Scholar
  8. Burnham CW (1981) The nature of multicomponent aluminosilicate melts. Phys chem Earth 13, 14: 191–227Google Scholar
  9. Calas G, Petiau J (1983) Coordination state of iron in oxide glasses through high-resolution K-edge spectra: information from pre-edge. Sol State Commun 48: 625–629CrossRefGoogle Scholar
  10. Chakraborty IN, Condrate RA (1985) The vibrational spectra of glasses in the Na2O-SiO2-P2O5 system with a 1:1 SiO2: P2O5 molar ratio. Phys Chem Glass 26: 68–74Google Scholar
  11. Chandrasekhar HR, Chandrasekhar M, Manghnani MH (1979) Phonons in titanium-doped vitreous silica. Sol State Commun 31: 329–333CrossRefGoogle Scholar
  12. DeJong BHWS, Keefer KD, Brown GE, Taylor CM (1981) Polymerization of silicate and aluminate tetrahedra in glasses, melts and aqueous solutions. III. Local silicon environments in silicate glasses. Geochim Cosmochim Acta 45: 1291–1308Google Scholar
  13. Dickinson JE, Hess PC (1985) Rutile solubility and titanium coordination in silicate melts. Geochim Cosmochim Acta 49: 2289–2296CrossRefGoogle Scholar
  14. Dingwell DB, Virgo D (1987) The effect of oxidation state on the viscosity of melts in the system Na2O-FeO-Fe2O3-SiO2. Geochim Cosmochim Acta 51: 195–205CrossRefGoogle Scholar
  15. Domine F, Piriou B (1986) Raman spectroscopic study of the SiO2-Al2O3-K2O vitreous system: distribution of silicon and second neighbors. Am Mineral 71: 38–50Google Scholar
  16. Engelhardt G, Nofz M, Forkel K, Wishmann FG, Magi M, Samoson A, Lippmaa E (1985) Struct ural studies of calcium aluminosilicate glasses by high resolution solid state 29Si and 27A1 magic angle spinning nuclear magnetic resonance. Phys Chem Glass 26: 157–165Google Scholar
  17. Farnan I, Stebbins JF (1990) A high temperature 29Si investigation of solid and molten silicates. J Am Ceram Soc 112: 32–39Google Scholar
  18. Fox KE, Furukawa Y, White WB (1982) Transition metal ions in silicate melts. P 2. Iron in sodium silicate glasses. Phys Chem Glass 23: 169–178Google Scholar
  19. Furukawa T, Fox KE, White WB (1981) Raman spectroscopic investigation of the structure of silicate glasses. III. Raman intensities and structural units in sodium silicate glasses. J Chem Phys 153: 3226–3237Google Scholar
  20. Furukawa T, White WB (1979) Structure and crystallization of glasses in the Li2Si2O5-TiO2 system determined by Raman spectroscopy. Phys Chem Glass 20: 69–80Google Scholar
  21. Galeener FL (1982) Planar rings in glasses. Sol State Commun 44: 1037–1040CrossRefGoogle Scholar
  22. Gaskell PH, Tallant ID (1980) Refinement of a random network model for vitreous silicon dioxide. Phil Mag B42: 265–286CrossRefGoogle Scholar
  23. Gladden LF (1990) Medium-range order in v-SiO2. J Non-Cryst Solids 119: 318–331CrossRefGoogle Scholar
  24. Greegor RB, Lytle WB, Sandstrom DR, Wong J, Schultz P (1983) Investigation of TiO2-SiO2 glasses by X-ray absorption spectroscopy. J Non-Cryst Solids 55: 27–43CrossRefGoogle Scholar
  25. Hess PC (1980) Polymerization model for silicate melts. In: Hargraves RB (ed) Physics of magmatic processes. Princeton Univ Press, Princeton 587 ppGoogle Scholar
  26. Imaoka M, Hasegawa H, Yasui I (1983) X-ray diffraction study of the structure of silicate glasses. Part 2. Alkali disilicate glasses. Phys Chem Glass 24: 72–78Google Scholar
  27. Kirkpatrick RJ, Smith KA, Insey RA, Oldfield E (1982) High-resolution 29Si NMR of glasses and crystals in the system CaO-MgO-SiO2. EOS, 63,29Si, Wash DC Am Geophys UnionGoogle Scholar
  28. Kirkpatrick RJ, Ostrike R, Weiss CA, Smith KA, Oldfield E (1986) High-resolution 27A1 and 29Si NMR spectroscopy of glasses and crystals along the join CaMgSi2O6-CaAl2SiO6. Am Mineral 71: 705–711Google Scholar
  29. Konnert JH, Karle L (1973) The computation of radial distribution functions for glassy materials. Acta Cryst A29 702–710CrossRefGoogle Scholar
  30. Konnert JH, Karle J, Ferguson GA (1973) Crystalline ordering in silica and germania glasses. Science 179: 177–178CrossRefGoogle Scholar
  31. Lange RL, Carmichael ISE (1990) Thermodynamic properties of silicate liquids with emphasis on density, thermal expansion and compressibility In: Nicholls Z, Russell ZK (eds) Modern methods of igneous petrology: understanding magmatic processes. Reviews in mineralogy, Mineralogical Society of America, Washington, DC, pp 25–64Google Scholar
  32. Matson DW, Sharma SK, Philpotts JA (1983) The structure of high-silica alkali-silicate glasses — a Raman spectroscopic investigation. J Non-Cryst Solids 58: 323–352CrossRefGoogle Scholar
  33. Matson DW, Sharma S, Philpotts J A (1986) Raman spectra of some tectosilicates and glasses along the orthoclase-anorthite and nepheline-anorthite joins. Am Mineral 71: 694–704Google Scholar
  34. Matsui Y, Kawamura K (1984) Computer simulation of structures of silicate melts and glasses. In: Sunagawa I (ed) Materials science of the earth’s interior. Reidel, Tokyo, pp 3–23Google Scholar
  35. McMillan P, Piriou B (1982) The structures and vibrational spectra of crystals and glasses in the silica-alumina system. J Non-Cryst Solids 53: 279–298CrossRefGoogle Scholar
  36. McMillan P, Piriou B, Navrotsky A (1982) A Raman spectroscopic study of glasses along the joins silica-calcium aluminate, silica-sodium aluminate and silica-potassium aluminate. Geochim Cosmochim Acta 46: 2021–2037CrossRefGoogle Scholar
  37. Merzbacher C, Sherriff BL, Hartman SJ, White WB (1990) A high-resolution 29Si and 27A1 NMR study of alkaline earth aluminosilicate glasses. J Non-Cryst Solids 124: 194–206CrossRefGoogle Scholar
  38. Mozzi RL, Warren BE (1969) The structure of vitreous silica. J Appl Cryst 2: 149–192CrossRefGoogle Scholar
  39. Mysen BO (1988) Structure and properties of silicate melts. Elsevier, Amsterdam, 354 ppGoogle Scholar
  40. Mysen BO (1990a) The role of aluminum in depolymerized, peralkaline aluminosilicate melts in the systems Li2O-Al2O3-SiO2, Na2O-Al2O3-SiO2 and K2O-Al2O3-SiO2. Am Mineral 75: 120–134Google Scholar
  41. Mysen BO (1990b) Interaction between phosphorous and iron oxides in silicate melts. Annu Rep Dir Geophys Lab 1989-1990: 66–75Google Scholar
  42. Mysen BO (1990c) Relationships between melt structure and petrologic processes. Earth-Sci Rev 27: 261–365CrossRefGoogle Scholar
  43. Mysen BO, Virgo D (1989) Redox equilibria, structure, and properties of Fe-bearing alumino-silicate melts: Relationships between temperature, composition, and oxygen fugacity in the system Na2O-Al2O3-SiO2-Fe-0. Am Mineral 74: 58–76Google Scholar
  44. Mysen BO, Virgo D, Scarfe CM (1980a) Relations between the anionic structure and viscosity of silicate melts — a Raman spectroscopic study. Am Mineral 65: 690–710Google Scholar
  45. Mysen BO Ryerson FJ, Virgo D (1980b) The influence of Ti02 on structure and derivative properties of silicate melts. Am Mineral 65: 1150–1165Google Scholar
  46. Mysen BO, Virgo D, Kushiro I (1981a) The structural role of aluminum in silicate melts — a Raman spectroscopic study at 1 atmosphere. Am Mineral 66: 678–701Google Scholar
  47. Mysen BO, Ryerson FJ, Virgo D (1981b) The structural role of phosphorous in silicate melts. Am Mineral 66: 106–117Google Scholar
  48. Mysen BO, Virgo D, Seifert FA (1982) The structure of silicate melts: implications for chemical and physical properties of natural magma. Rev Geophys 20: 353–383CrossRefGoogle Scholar
  49. Mysen BO, Virgo D, Neumann ER, Seifert FA (1985) Redox equilibria and the structural states of ferric and ferrous iron in melts in the system CaO-MgO-Al2O3-SiO2: relations between redox equilibria, melt structure and liquidus phase equilibria. Am Mineral 70: 317–322Google Scholar
  50. Navrotsky A, Hon R, Weill DF, Henry DJ (1982) Thermochemistry of glasses and liquids in the system CaMgSi2O6-CaAl2SiO6-NaAlSiO3O8, SiO2-CaAl2Si2O8-NaAlSi3O8 and SiO2-Al2O3-CaO-Na2O. Geochim Cosmochim Acta 44: 1409–1433CrossRefGoogle Scholar
  51. Nelson C, Tallant DR (1986) Raman studies of sodium phosphates with low silica contents. Phys Chem Glass 26: 119–122Google Scholar
  52. Oestrike R, Yang W-H, Kirkpatrick RJ, Hervig R, Navrotsky A, Montez B (1987) High-resolution 23Na, 27A1 and 29Si NMR spectroscopy of framework-aluminosilicate glasses. Geochim Cosmochim Acta 51: 2199–2210CrossRefGoogle Scholar
  53. Phillips JC (1984) Microscopic origin of anomalously narrow Raman lines in network glasses. J Non-Cryst Sol 63: 347–355CrossRefGoogle Scholar
  54. Randall JT, Rooksby HP, Cooper B (1930) X-ray diffraction and the structure of vitreous solids. I. Z Krist 75: 196–214Google Scholar
  55. Revesz AG, Walrafen GE (1983) Structural interpretation of some of the Raman lines from vitreous silica. J Non-Cryst Sol 54: 323–355CrossRefGoogle Scholar
  56. Ryerson FJ, Hess PC (1980) The role of P2O5 in silicate melts. Geochim Cosmochim Acta 44: 611–625CrossRefGoogle Scholar
  57. Sandstrom DR, Lytle FW, Wei P, Greegor RB, Wong J, Schultz P (1980) Coordination of Ti in TiO2-SiO2 glasses by X-ray absorption spectroscopy. J Non-Cryst Sol 41: 201–207CrossRefGoogle Scholar
  58. Schneider E, Stebbins JF, Pines A (1987) Speciation and local structure in alkali and alkaline earth silicate glasses: constraints from 29-Si NMR spectroscopy. J Non-Cryst Sol 89: 371–383CrossRefGoogle Scholar
  59. Seifert FA, Mysen BO, Virgo D (1981) Structural similarity between glasses and melts relevant to petrological processes. Geochim Cosmchim Acta 45: 1879–1884CrossRefGoogle Scholar
  60. Seifert FA, Mysen BO, Virgo D (1982) Three-dimensional network structure in the systems SiO2-NaA1O2, SiO2-CaAl2O4 and SiO2-MgAl2O4. Am Mineral 67: 696–711Google Scholar
  61. Soules TF (1990) Computer simulation of glass structure. J Non-Cryst Sol 123: 48–70CrossRefGoogle Scholar
  62. Stebbins JF (1987) Identification of multiple structural species in silicate glasses by 29Si NMR. Nature 330: 465–467CrossRefGoogle Scholar
  63. Stebbins JF (1988) Effects of temperature and composition on silicate glass structure and dynamics: Si-29 NMR results. J Non-Cryst Sol 106: 359–369CrossRefGoogle Scholar
  64. Taylor M, Brown GE (1979a) Structure of mineral glasses. I. The feldspar glasses NaAlSi3O8, KAlSi3O8, CaAl2Si2O8. Geochim Cosmochim Acta 43: 61–77CrossRefGoogle Scholar
  65. Taylor M, Brown GE (1979b) Structure of mineral glasses. II. The SiO2-NaAlSiO4 join. Geochim Cosmochim Acta 43: 1467–1475CrossRefGoogle Scholar
  66. Tobin MC, Baak T (1968) Raman spectra of some low-expansion glasses. J Am Opt Soc 58: 1459–1460CrossRefGoogle Scholar
  67. Toop DW, Samis CS (1962a) Some new ionic concepts of silicate slags. Can Metall Q 1: 129–152Google Scholar
  68. Toop GW, Samis CS (1962b) Activities of ions in silicate melts. Trans AIME 224: 878–887Google Scholar
  69. Virgo D, Mysen BO (1985) The structural state of iron in oxidized vs. reduced glasses at 1 atm: A 57Fe Mossbauer study. Phys Chem Mineral 12: 65–76CrossRefGoogle Scholar
  70. Virgo D, Mysen BO, Kushiro I (1980) Anionic constitution of silicate melts quenched at 1 atm from Raman spectroscopy: implications for the structure of igneous melts. Science 208: 1371–1373CrossRefGoogle Scholar
  71. Waychunas GA, Brown GE, Ponader CW, Jackson WE (1988) Evidence from X-ray absorption for network-forming Fe2+ in molten alkali silicates. Nature 332: 251–253CrossRefGoogle Scholar
  72. Wong J, Angell CA (1976) Glass structure by spectroscopy. Dekker, New YorkGoogle Scholar
  73. Yang W-H, Kirkpatrick RJ, Turner G (1986) 31P and 29Si magic-angle sample-spinning NMR investigation of the structural environment of phosphorous in alkaline-earth silicate glasses. J Am Ceram Soc 69: C222–C223Google Scholar
  74. Zachariassen W (1932) The atomic arrangement in glass. J Am Chem Soc 54: 3841–3851CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • B. O. Mysen
  • D. Virgo

There are no affiliations available

Personalised recommendations