Skip to main content

X-Ray Topographic Study of the Real Structure of Minerals

  • Chapter
Advanced Mineralogy
  • 720 Accesses

Abstract

Minerals in rocks are usually rather imperfect, but individual minerals which have been allowed to grow without hindrance and with free surfaces, such as in pegmatites or druses, may be highly perfect. X-ray topography is an imaging technique which is very sensitive to local strains and which is therefore applied to perfect or nearly perfect crystals. It enables one to visualize and to characterize defects such as dislocations, growth bands, growth sector boundaries, low angle grain boundaries, stacking faults, twin boundaries, etc. It has been used successfully to assess the crystalline perfection of many types of minerals, carbonates (calcite, dolomite, magnesite, cerussite), quartz, silicates (beryl, topaz, spodumene, orthose), diamond, fluorite, phosphates (apatite), etc. The main motivation for such studies is the determination of the growth history of the minerals and the understanding of their genesis. But they are also very useful to determine the characteristics of the defects responsible for the deformation of minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

On the Method

  • Authier A (1967) Contrast of dislocation images in X-ray transmission topography. Adv X-ray Anal 10: 9–31

    Google Scholar 

  • Authier A (1972) X-ray topography as a tool in crystal growth studies. J Cryst Growth 13 /14: 34–38

    Article  Google Scholar 

  • Authier A (1977) X-ray and neutron topography of solution-grown crystals. In: Kaldis E, Scheel H J (eds) Crystal Growth and Materials. North Holland, pp 516–548

    Google Scholar 

  • Authier A (1980) Recent developments in the topographic assessment in crystals. J Cryst Growth 48: 683–686

    Article  Google Scholar 

  • Lang AR (1958) Direct observation of individual dislocations by X-ray diffraction. J Appl Phys 29: 597–598

    Article  Google Scholar 

  • Lang AR (1959a) The projection topograph. A new method in X-ray diffraction micrography. Acta Cryst 12: 249–250

    Article  Google Scholar 

  • Lang AR (1959b) Studies of individual dislocations in crystals by X-ray diffraction microradiography. J Appl Phys 30: 1748–1755

    Article  Google Scholar 

  • Newkirk JB (1959) The observation of dislocations and other imperfections by X-ray extinction contrast. Trans TMS-AIME 215: 483–497

    Google Scholar 

  • Tanner BK (1976) X-ray diffraction topography. Pergamon Press, Oxford

    Google Scholar 

On X-Ray Topography of Carbonates

  • Sauvage M (1968) Observations de sources et de réactions entre dislocations partielles de macle sur des topographies aux rayons X. Phys Stat Sol 29: 725–736

    Article  Google Scholar 

  • Zarka A (1972) Etude de défauts de croissance dans des carbonates rhomboédriques naturels. Bull Soc Fr Minér Crist 95: 24–32

    Google Scholar 

  • On X-Ray Topography of Quartz

    Google Scholar 

  • Baran Z, Godwod K, Warminski T (1987) X-ray study of Brazil twins in natural amethyst. Phys Stat Sol (a) 101: 9–24

    Article  Google Scholar 

  • Lang AR (1965) Mapping Dauphiné and Brazil twins in quartz by X-ray topography. Appl Phys Lett 7: 168–170

    Article  Google Scholar 

  • Lang AR (1967) Fault surfaces in alpha quartz: their analysis by X-ray diffraction contrast and their bearing on growth history and impurity distribution. J Phys Chem Sol suppl 1: 833–838

    Google Scholar 

  • McLaren AC, Phakey PP (1969) Diffraction contrast from Dauphiné twin boundaries in quartz. Phys Stat Sol 31: 723–737

    Article  Google Scholar 

  • McLaren AC, Pitkethly DR (1982) The twinning microstructure and growth of amethyst quartz. Phys Chem Mineral 8: 128–135

    Article  Google Scholar 

  • Phakey PP (1969) X-ray topographic study of defects in quartz. I. Brazil twin boundaries. Phys Stat Sol 34: 105–119

    Article  Google Scholar 

  • Scandale E, Stasi F (1985) Growth defects in quartz druses. 003Ca003E Pseudo-basal dislocations. J Appl Cryst 18: 275–278

    Article  Google Scholar 

  • Scandale E, Stasi F, Zarka A (1983) Growth defects in a quartz druse. 003Ca + c) Dislocation. J Appl Cryst 16: 399–403

    Article  Google Scholar 

  • Ser A, Bideau JP, Clastre J, Zarka A (1980) Etude des défauts de croissance dans des monocristaux naturels de quartz. J Appl Cryst 13: 50–57

    Article  Google Scholar 

On X-Ray Topography of Beryl

  • Graziani G, Scandale E, Zarka A (1981) Growth of a beryl single crystal - history of the development and the genetic medium. J Appl Cryst 14: 241–246

    Article  Google Scholar 

  • Graziani G, Lucchesi S, Scandale E (1990) General and specific growth marks in pegmatite beryls. Phys Chem Mineral 17: 379–384

    Article  Google Scholar 

  • Herres N, Lang AR (1983) X-ray topography of natural beryl using synchrotron and conventional sources. J Appl Cryst 16: 47–56

    Article  Google Scholar 

  • Scandale E, Scordari F, Zarka A (1979a) Etude des défauts dans des monocristaux de béryl. I. Observations des dislocations. J Appl Cryst 12: 70–77

    Google Scholar 

  • Scandale E, Scordari F, Zarka A (1979b) Etude des Défauts dans des monocristaux de béryl. II. Etude de croissance. J Appl Cryst 12: 78–83

    Google Scholar 

  • Scandale E, Lucchesi S, Graziani G (1990) Growth defects and growth marks in pegmatite beryls. Eur J Mineral 2: 305–311

    Google Scholar 

On X-Ray Topography of Topaz

  • Giacovazzo C, Scandale E, Zarka A (1975) Etude des défauts dans des monocristaux naturels de topaze. II. Etude de génèse. J Appl Cryst 8: 315–324

    Google Scholar 

  • Isogami M, Sunagawa I (1975) X-ray topographie study of a topaz crystal. Am Mineral 60: 889–897

    Google Scholar 

  • Phakey PP, Horney RB (1976) On the nature of grown-in defects in topaz. Acta Cryst A32: 177–182

    Article  Google Scholar 

  • Zarka A (1974) Etude des défauts dans des monocristaux naturels de topaze. I. Observation des dislocations. J Appl Cryst 7: 453–460

    Article  Google Scholar 

On X-Ray Topography of Spodumene

  • Authier A, Zarka A (1977) Observation of growth defects in spodumene crystals by X-ray topography. Phys Chem Mineral 1: 15–26

    Article  Google Scholar 

On X-Ray Topography of Diamonds

  • Lang AR (1974a) Glimpses into the growth history of natural diamonds. J Cryst Growth 24 /25: 108–115

    Article  Google Scholar 

  • Lang AR (1974b) On the growth-sectorial dependence of defects in natural diamonds. Proc R Soc Lond A 340: 233–248

    Article  Google Scholar 

  • Lang AR (1977) Defects in natural diamonds: recent observations by new methods. J Cryst Growth 42: 625–631

    Article  Google Scholar 

  • Lang AR (1979) Internal structure of diamond. In: Field JE (ed) The properties of diamond. London, Academic Press, Chap 14

    Google Scholar 

  • Lang AR, Woods GS (1976) Fingerprinting diamonds by X-ray topography. Indian Diamond Rev 36: 96–103

    Google Scholar 

  • Lawn B, Kamiya Y, Lang AR (1965) An X-ray topographic study of planar growth defects in a natural diamond. Philos Mag 12: 177–189

    Article  Google Scholar 

  • Miuscov VF, Orlov YuL (1966) X-ray topographic study of Yakoutia diamonds. Dokl Akad Nauk SSSR 166: 198–201 (in Russian)

    Google Scholar 

  • Moore M, Lang AR (1972) On the internal structure of diamonds of cubic habit. Philos Mag 26: 1313–1325

    Article  Google Scholar 

  • Moore M, Lang AR (1974) On the origin of the rounded dodecahedral habit of natural diamond. J Cryst Growth 26: 133–139

    Article  Google Scholar 

  • Orlov YuL, Bulienkov NA, Martovitsky VP (1982) A study of internal structure of variety. III. Diamonds by X-ray section topography. Phys Chem Mineral 8: 105–111

    Google Scholar 

  • Suzuki S, Lang AR (1977) X-ray Bragg reflection, “spike” reflection and ultraviolet absorption topographic studies of internal structures of natural diamonds revealing mixed-habit growth. J Cryst Soc Jpn 19: 207–214

    Google Scholar 

  • Wild RK, Evans T, Lang AR (1967) Birefringence, X-ray topography and electron microscope examination of the plastic deformation of diamond. Philos Mag 15: 267–279

    Google Scholar 

On X-Ray Topography of Fluorite

  • Beswick DM, Lang AR (1972) Some X-ray topographic observations on natural fluorite. Philos Mag 26: 1057–1070

    Article  Google Scholar 

  • Calas G, Zarka A (1973) Etude des défauts de croissance dans des monocristaux de fluorite naturelle. Bull Soc Fr Minéral Crist 96: 274–277

    Google Scholar 

On X-Ray Topography of Apatite

  • Phakey PP, Leonard JF (1970) Dislocations and fault surfaces in natural apatite. J Appl Cryst 3: 38, 44

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Authier, A., Zarka, A. (1994). X-Ray Topographic Study of the Real Structure of Minerals. In: Marfunin, A.S. (eds) Advanced Mineralogy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78523-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78523-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78525-2

  • Online ISBN: 978-3-642-78523-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics