Skip to main content

Point Defects as Precursors of Electron-Hole Centers: Systematics and Theories of Radiation Centers in Minerals

  • Chapter

Abstract

Many of the local (point) defects in solids are paramagnetic or can be made so, and hence are amenable to study by electronic paramagnetic resonance (EPR) as well as by optical spectroscopy. In many cases, it is convenient to classify these into two general types: missing-electron species and excess-electron species, as compared to some diamagnetic precursor. The concept of holes is useful when the number of electrons is insufficient to fill a given atomic or molecular orbital. Typically, when one more electron is required for this completion, i.e., one negative charge is missing (this is theoretically equivalent to the presence of a hypothetical positive charge), then one can speak of the existence of a hole in the orbital, and treat this as a physically meaningful entity. It is fruitful to speak of the paramagnetism and EPR spectrum of such a hole. However, the concept is not universally valuable, e.g., for species H0 and Fe3+ which have half-filled shells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atkins PW, Symons MCR (1967) The structure of inorganic radicals. An application of electron spin resonance to the study of molecular structure. Elsevier, Amsterdam

    Google Scholar 

  • Bershov LV, Marfunin AS (1967) Paramagnetic resonance of electron-hole centers in minerals. Dokl Akad Nauk 173: 410–412

    Google Scholar 

  • Bershov LV, Martirosyan VO, Marfunin AS, Speranski AV (1975) EPR and structure models for radical ions in anhydrite crystals. Fortschr Mineral 52: 591–604

    Google Scholar 

  • Bill H, Calas G (1978) Color centers associated rare-earth ions and the origin of coloration in natural fluorites. Phys Chem Mineral 8: 161–166

    Google Scholar 

  • Chatagnon B (1986) La resonance paramagnétique électronique du center E1 dans le quartz. Aspect fondamental et intérêt en géologie et en prospection minière. Thèse d’Etat INPL Nancy

    Google Scholar 

  • Edgar A, Vance ER (1977) Electron paramagnetic resonance, optical absorption and magnetic circular dichroism of the CO3 molecular ion in irradiated natural beryl. Phys Chem Mineral 1: 165–177

    Article  Google Scholar 

  • Griscom DL (1990) Electron spin resonance. Glass Sci Technol 4B: 151–251

    Google Scholar 

  • Henderson H, Wertz JE (1977) Defects in alkaline earth oxides. Wiley, New York

    Google Scholar 

  • Hofmeister AM, Rossman GR (1985a) A spectroscopic study of irradiation coloring of amazonite: structurally hydrous, lead-bearing feldspar. Am Mineral 70: 794–804

    Google Scholar 

  • Hofmeister AM, Rossman GR (1985b) A model for the irradiative coloration of smoky feldspar and the inhibitive influence of water. Phys Chem Mineral 12: 324–332

    Article  Google Scholar 

  • Isoya J, Weil JA, Halliburton LE (1981) EPR and ab initio SCF-MO studies of the Si.H-Si system in the E4 center of alpha-quartz. J Chem Phys 74: 5436–5448

    Article  Google Scholar 

  • Jani MG, Bossoli RB, Halliburton LE (1983) Further characterization of the E1 center in crystalline SiO2. Phys Rev B27: 2285–2293

    Article  Google Scholar 

  • Krasnobaev AA, Votyakov SL, Krokhalev VYa (1988) Spectroscopy of zircons: properties and geological applications. Nauka, Moscow, 150 pp

    Google Scholar 

  • Lang R, Calvo C, Datars WR (1977) Phase transformation in AlPO4 and quartz studied by electron paramagnetic resonance of Fe3+. Can J Phys 55: 1613–1620

    Article  Google Scholar 

  • Lehmann G, Bambauer HU (1973) Quartz crystals and their colors. Angew Chem 85: 281–289

    Article  Google Scholar 

  • Marfunin AS (1979) Spectroscopy, luminescence and radiation centers in minerals. Springer, Berlin Heidelberg New York

    Chapter  Google Scholar 

  • Marfunin AS, Bershov LV (1970) Electron/hole centers in feldspars and their possible crystal chemical and petrological significance. Dokl Akad Nauk 193: 412–424

    Google Scholar 

  • Marshall SA, McMillan J A (1968) Electron spin resonance absorption spectrum of CO2 molecule ions associated with F- ions in single-crystal calcite. J Chem Phys 1: 4887–4890

    Article  Google Scholar 

  • Maschmeyer D, Lehmann G (1983) A trapped-hole center causing rose coloration of natural quartz. Z Krist 163: 181–196

    Article  Google Scholar 

  • Morton JR, Preston KF (1987) Magnetic properties of free radicals. In: Fischer H (ed) Landolt-Bornstein numerical data and functional relationships in science and technology, New Ser, Group II, 17a. Springer, Berlin Heidelberg New York, pp 5–198. Also: Von Zelewsky A, Daul C, Schlapfer CW (1987) Table 2, pp 199–205

    Google Scholar 

  • Nassau K, Prescott BE (1975) Blue and brown topaz produced by gamma irradiation. Am Mineral 60: 705–709

    Google Scholar 

  • Petrov I, Agel A, Hafner SS (1989) Distinct defect centers at oxygen positions in albite. Am Mineral 74: 1130–1141

    Google Scholar 

  • Ryabov ID, Bershov LV, Speransky AV, Ganeev IG (1983) Electron paramagnetic resonance of PO3- and SO3 radicals in anhydrite, celestite and barite: the hyperfine structure and dynamics. Phys Chem Mineral 10: 21–26

    Article  Google Scholar 

  • Schulman JH, Compton WD (1963) Color centers in solids. Pergamon Press, New York

    Google Scholar 

  • Seitz F (1954) Color centers in alkali halides crystals. Rev Mod Phys 26: 7–94

    Article  Google Scholar 

  • Serebrennikov AI, Valter A A, Mashkostsev RI, Scherbakova MYa (1982) The investigation of defects in shock-metamorphosed quartz. Phys Chem Mineral 8: 153–157

    Article  Google Scholar 

  • Solnstev VP, Scherbakova MYa (1973) EPR study of structure defects of CaW04. Zh Strukt Chim 14: 222–229

    Google Scholar 

  • Speit B, Lehmann G (1982) Radiation defects in feldspars. Phys Chem Mineral 8: 77–82

    Article  Google Scholar 

  • Vassilikou-Dova AB, Lehmann G (1987) Investigations of minerals by electron paramagnetic resonance. Fortschr Mineral 65: 173–202

    Google Scholar 

  • Weil J A (1984) A review of electron spin spectroscopy and its applications to the study of paramagnetic defects in crystalline quartz. Phys Chem Mineral 10: 149–165

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dusausoy, Y., Weil, J.A. (1994). Point Defects as Precursors of Electron-Hole Centers: Systematics and Theories of Radiation Centers in Minerals. In: Marfunin, A.S. (eds) Advanced Mineralogy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78523-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78523-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78525-2

  • Online ISBN: 978-3-642-78523-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics