Advertisement

On the Importance of Mathematical Models and Methods to the Insurance Business

  • Walter F. Schickinger
  • Wolf-Rüdiger Heilmann

Abstract

In some fields of economics and especially in everyday work in business enterprises and administrations the applicability and practicability of mathematics is not infrequently doubted and called in question. This is completely different in the insurance business, since right from the start of commercial insurance about 300 years ago the bases of calculation — and consequently a mathematical component — has been playing a key role. Meanwhile the body of mathematical methods and models has been enlarged and refined considerably, and the fields of mathematical application in insurance have increased strongly. In the present paper some of these applications which are typical or particularly relevant shall be discussed. Emphasis will not be laid on technicalities but on the practical problems to be solved.

Keywords

Moral Hazard Collective Model Compound Poisson Process Insurance Business Claim Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BOWERS, N. L, GERBER, H. U., HICKMAN, J. C., JONES, D. A. and NESBITT, C. J. (1986), Actuarial Mathematics, The Society of Actuaries, Itasca.Google Scholar
  2. D’ARCY, S. P. and DOHERTY, N. A. (1988), The Financial Theory of Pricing Property-Liability Insurance Contracts, Irwin, Homewood.Google Scholar
  3. GERBER, H. U. (1979), An Introduction to Mathematical Risk Theory, Irwin, Homewood.Google Scholar
  4. GERBER, H. U. (1990), Life Insurance Mathematics, Springer, Berlin.Google Scholar
  5. HEILMANN, W.-R. (1986), “Versicherungsmathematische Modelle zur Beschreibung des moralischen Risikos”, in: HENN, R. and SCHICKINGER, W.F. (1986), Staat, Wirtschaft, Assekuranz und Wissenschaft, Verlag Versicherungswirtschaft, Karlsruhe.Google Scholar
  6. HEILMANN, W.-R. (1988), Fundamentals of Risk Theory, Verlag Versicherungswirtschaft, Karlsruhe.Google Scholar
  7. HEILMANN, W.-R. (1991), “Risk Management, Versicherung und Schadenverhütung”, in: HOPP, F. H. and MEHL, G. (1991), Versicherungen in Europa heute und morgen, Verlag Versicherungswirtschaft, Karlsruhe.Google Scholar
  8. JEWELL, W. S. (1983), A Survey of Mathematical Models in Insurance, Verlag Versicherungswirtschaft, Karlsruhe.Google Scholar
  9. MOSLER, K. and SCARSINI, M., eds. (1991), Stochastic Orders and Decision Under Risk, Institute of Mathematical Statistics, Hayward.Google Scholar
  10. PANJER, H. H., ed. (1986), Actuarial Mathematics, American Mathematical Society, Providence.Google Scholar
  11. TROWBRIDGE, C. I. (1989), Fundamental Concepts of Actuarial Science, AERF, Washington.Google Scholar
  12. VAN EEGHEN, J. (1981), Loss Reserving Methods, Nationale-Nederlanden N.V., Rotterdam.Google Scholar
  13. WILLIAMS, C. A. and HEINS, R. M. (1985), Risk Management and Insurance 5th ed., Mc Graw-Hill, New York.Google Scholar
  14. WOLFF, K.-H. (1966), Methoden der Unternehmensforschung im Versicherungswesen, Springer, Berlin.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1993

Authors and Affiliations

  • Walter F. Schickinger
    • 1
  • Wolf-Rüdiger Heilmann
    • 1
  1. 1.Karlsruher Lebensversicherung AGGermany

Personalised recommendations