A Heuristic for Multi-Product, Multi-Period, Single-Level Batch Production

  • Matthias Lachmann
  • Klaus Neumann

Abstract

We describe a heuristic procedure for solving multi-product, multi-period, single-level batch-production problems. The method consists of two procedures for a lot-sizing problem with capacity constraints for time-varying demand and a job-shop machine-scheduling problem for given lot sizes, which are applied in succession. We also discuss the performance of the priority rules of the Giffler-Thompson algorithm for solving the job-shop problem.

Keywords

Balas 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, J., Balas, E., Zawak, D. (1988), “The Shifting Bottleneck Procedure for Job Shop Scheduling”, Management Science 34, 391–401.CrossRefGoogle Scholar
  2. Dixon, P.S., Silver, E.A. (1981), “A Heuristic Solution Procedure for the Multi-Item, Single-Level, Limited Capacity, Lot-Sizing Problem”, J. of Operations Management 2, 23–39.CrossRefGoogle Scholar
  3. Eisenhut, P.S. (1975), “A Dynamic Lot Sizing Algorithm with Capacity Constraints”, AIIE Transactions 7, 170–176.Google Scholar
  4. French, S. (1982), Sequencing and Scheduling, Ellis Horwood, Chichester.Google Scholar
  5. Glück, U., Schwindt, C., Thierer, J. (1992), Beurteilung von Prioritätsregeln in der Heuristik von Lambrecht amp; Vanderveken anhand verschiedener Kriterien, Studienarbeit, Institut für Wirtschaftstheorie und Operations Research der Universität Karlsruhe.Google Scholar
  6. Kistner, K.-P., Steven, M. (1990), Produktionsplanung, Physica, Heidelberg.Google Scholar
  7. Lambrecht, M.R., Vanderveken, H. (1979), “Production Scheduling and Sequencing for Multi-Stage Production Systems”, OR Spektrum 1 103–114.CrossRefGoogle Scholar
  8. Neumann, K., Morlock, M. (1992), Operations Research, Carl Hanser, München.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1993

Authors and Affiliations

  • Matthias Lachmann
  • Klaus Neumann
    • 1
  1. 1.Institut für Wirtschaftstheorie und Operations ResearchUniversität KarlsruheKarlsruhe 1Germany

Personalised recommendations