Advertisement

Stochastic Interpretation of the Cornfield-Leontief Multiplier Process

  • Kuno Egle
  • Szaniszlo Fenyi

Abstract

In part 1 we remember the standard Leontief setup and discuss the economic meaning of the Cornfield-Leontief backward equation. The production network, when considering sequences of product transformations through the economic sectors, is understood as a whirlpool. Part 2 remembers the Monte Carlo solution of input output models and is focused principally on the stochastics of trajectory-length, since trajectories of the underlying Markov process play the role of the product path. Part 3 exemplifies some results of part 2 using input-output-tables of Germany.

Keywords

Final Demand Complete Trajectory Stochastic Interpretation Monte Carlo Solution Leontief Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DORFMAN, R., SAMUELSON, P. A. and Solow, R. M. (1958), Linear Programming and Economic Analysis, McGraw-Hill, New York etc.Google Scholar
  2. EGLE, K. and FENYI, S. (1987a), “Losung des DIW Input-Output-Systems durch stochastische Inversion,” Discussion Paper Nr. 331, Institut fur Wirtschaftstheorie und Operations Research, Universitat Karlsruhe.Google Scholar
  3. EGLE, K. and FENYI, S. (1987b), “Stochastische Inversion von Leontief-Matrizen,” in: Opitz, O. and Rauhut, B. (Hrsg.), Ökonomie und Mathematik, Springer, Berlin etc.Google Scholar
  4. EGLE, K. and FENYI, S. (1988), “Stochastische Lösung des dynamischen und statischen Input-Output-Modells,” in: Janko, W. (Hrsg.), Statistik und Ökonomie, Springer, Berlin etc.Google Scholar
  5. EGLE, K. and FENYI, S. (1991), “Eigenvalue Estimations in input-output and growth models by Monte Carlo techniques,” Discussion Paper Nr. 406, Institut für Wirtschaftstheorie und Operations Research, Universität Karlsruhe.Google Scholar
  6. NIKAIDO, H. (1968), Convex Structures and Economic Theory, Academic Press, New York, San Francisco, London.Google Scholar
  7. NIKAIDO, H. (1972), Introduction to Sets and Mappiags in Modern Economics, North-Holland, Amsterdam.Google Scholar
  8. SCHUMANN, J. (1968), Input-Output-Analyse, Springer, Berlin etc.Google Scholar
  9. STAGLIN, R. (1985), Input/Output-Struktur fur die Wirtschaft der Bundesrepublik Deutschland, Input/Output-Wandtafel 1980, herausgegeben vom Spektrum der Wissenschaft, Heidelberg, in Zusammenarbeit mit dem DIW, Berlin, April 1985.Google Scholar
  10. TAKAYAMA, A. (1974), Mathematical Economics, The Dry den Press, Hinsdale, Illinois.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1993

Authors and Affiliations

  • Kuno Egle
  • Szaniszlo Fenyi
    • 1
  1. 1.Institut für Mathematische Wirtschaftstheorie und StatistikUniversity of KarlsruheGermany

Personalised recommendations