Advertisement

Investigation of SO2 Oxidation in Humid Air Stream by High Current Density Pulsed Electron Beam

  • E. I. Baranchicov
  • G. S. Belenky
  • M. A. Deminsky
  • V. P. Denisenko
  • D. D. Maslenicov
  • B. V. Potapkin
  • V. D. Rusanov
  • A. M. Spector
  • E. V. Shulakova
  • A. A. Fridman
Conference paper
Part of the NATO ASI Series book series (volume 34)

Abstract

The electron beam and impulse corona discharge technology of air flow purification from SO2 and NOx are investigated now in many countries (Leonhardt et al. 1984; Svedchikov et al. 1988; Tokunaga et al. 1981; Baranchicov et al. 1990). One of the main problems considerably influenced on a perspective of practical using of this method is the reduction of oxidation energy cost. In this work it is shown that the energy cost weakly depends on current density j, if j < 10-4 A/cm2 and equals 10 eV/molecule. In this case, for example, it is necessary to use one hundred twenty 100-kW accelerators for gas stream (0.1% SO2) purification of a 300 MW electric power plant. That is why the realization of this project is very difficult for this energy cost of purification. This paper is dedicated to a new chain gas-cluster oxidation mechanism with theoretical investigation of this one realization. The results of experiments realized for the verification of this mechanism are presented here. The role of droplet-phase effect there are also presented.

Keywords

Energy Cost Excited Molecule Excited Particle Energy Cost Reduction Oxidation Reaction Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baranchicov, E. I., Belenky, G. S., Deminsky, M. A., Denisenko, V. P., Potapkin, B. V., Rusanov, V. D., and Fridman, A. A. (1990), “Plasma-catalysis SO2 oxidation in air”, preprint IAE-5256/12, Moscow.Google Scholar
  2. Frank, N, Kawamura, K., and Miller, G. (1985), Radiat. Phys. Chem. 25, 35.CrossRefGoogle Scholar
  3. Fehsenfeld, F. C. (1974), J. Chem. Phys. 61, 3181.CrossRefGoogle Scholar
  4. Gentry, J. W., Paur, H.R., Matzing, H., and Bauman, W. (1988), Radiat. Phys. Chem. 31, 95.Google Scholar
  5. Laudavala, W. K. and Morussi, J. W. (1985), J. Phys. D: Appl. Phys. 14, 2015.Google Scholar
  6. Leonhardt, J. W. (1984), Radiat. Phys. Chem. 24, 167.CrossRefGoogle Scholar
  7. Person, S. C. and Ham, D. O. (1988), Radiat. Phys. Chem. 31, 1.Google Scholar
  8. Potapkin, B. V., Rusanov, V. D., Fridman, A. A., and Shulakova, E. V. (1990), (in Russian) 5210/12, Moscow.Google Scholar
  9. Potapkin, B. V., Rusanov, V. D., and Fridman, A. A. (1989), DAH CCCP 308, 4, 897.Google Scholar
  10. Svedchicov, A. P. and Belousova, E. V. (1988), Radiat. Phys. Chem. 31, 15.Google Scholar
  11. Tokunaga, O. and Suzuki, N. (1981), Radiat. Phys. Chem. 24, 145.Google Scholar
  12. Washino, M., Tokunaga, O., and Hashimoto, S. (1984), IAAE-SM-194/706.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • E. I. Baranchicov
    • 1
  • G. S. Belenky
    • 1
  • M. A. Deminsky
    • 1
  • V. P. Denisenko
    • 1
  • D. D. Maslenicov
    • 1
  • B. V. Potapkin
    • 1
  • V. D. Rusanov
    • 1
  • A. M. Spector
    • 1
  • E. V. Shulakova
    • 1
  • A. A. Fridman
    • 1
  1. 1.Kurchatov Institute of Atomic EnergyMoscowRussia

Personalised recommendations