Gliding Discharge Reactor for H2s Valorization or Destruction

  • A. Czernichowski
Part of the NATO ASI Series book series (volume 34)

Abstract

Hydrogen sulfide is present in the fluids issuing from under the ground, such as low- or high-energy geothermal fluids, natural gases such as light hydrocarbons, gases stored in natural underground reservoirs or fluids used for assisted oil recovery. The H2S is also present in the industrial gases such as those issuing from oil desulfurization, coking plants, rubber pyrolysis, metallurgy, paper mills or viscose industry, the gases issuing from the desulfurization of biogases, the tail gases issuing from the processes of depollution already installed, etc.

Keywords

Burner Fatigue Methane Microwave Recombination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azizov, R. I., Vakar, A. K., Jivotov, V. K., Krasheninnikov, E. G., Krotov, M. F., Malkov, S. Ju., Novikov, G. I., Potapkin, B. V., Rusanov, V. D., and Fridman, A. A. (1985), “Plasmochimicheskoe poluchenie energonositelei (vodoroda, okisi ugleroda) v SVC razriade”, J. Techn. Phys. 55, 79–82.Google Scholar
  2. Bandermann, F and Harder, K. B. (1982), “Production of H2 via thermal decomposition of H2S and separation of H2 and H2S by pressure swing absorption”, Int. J. Hydrogen Energy 7, 471–475.CrossRefGoogle Scholar
  3. Bradley, J. N. and Dobson, (1967), J. Chem. Phys. 46, 2872.CrossRefGoogle Scholar
  4. Bagautdinov, A. Z., Jivotov, V. K., Eremenko, J. I., Kalachev, I. A., Musinov, S. A., Potapkin, B. V., Pampushka, A. M., Rusanov, V. D., Strelkova, M. I., Fridman, A. A., and Zoller, V. A. (1992), “Hydrogen sulfide dissociation in high pressure microwave discharge with power up to 1 MW”, 2nd European Congress on Thermal Plasma Processes, Paris, PS.2.10 (to be published in J. de Phys. (Paris). Google Scholar
  5. Civitano, L., Dinelli, G., Galimberti, I., Rea, M., and Turri, R. (1988), “Free radical production by corona discharges in a deNOx — deSOx reactor”, IX Int. Conf. on Gas Discharges and their Applications, Venice, Italy, 603–606.Google Scholar
  6. Czernichowski, A., Jörgensen, P., Lesueur, H., Chapelle, J., and Meguernes, K. (1990), “Destruction et valorisation complète de l’hydrogène sulfuré H2S par des procédés plasma- chimiques”, Eur. Congr. on Thermal Plasma Process and Mat. Behavior at High Temp., Odeillo — Font Romeu, France, J. de Phys. (Suppl.) 18, 65–71.Google Scholar
  7. Czernichowski, A., Lesueur, H., and Fillon, G. (1990), “Assistance électrique à la combustion des gaz d’étuves de peinture par dissipation d’énergie sous forme de décharges glissantes”, Workshop on Plasma Destr. of Wastes, Odeillo — Font Romeu, France.Google Scholar
  8. Czernichowski, A. and Lesueur, H. (1991), “Multi-electrodes high pressure gliding discharges reactor and its applications for some waste gas and vapor incineration”, Plasma Appl. to Waste Treatment, First Ann. INEL Conf, Idaho Falls, Idaho (USA).Google Scholar
  9. Czernichowski, A. and Lesueur, H. (1991), “Low Temperature Incineration of Some Volatile Organic Compounds by Gliding Discharges under Atmospheric Pressure”, 10th Int. Symp. on Plasma Chem., Bochum, Germany, Symp. Proa, 3.2.1.Google Scholar
  10. Czernichowski, A., Lesueur, H., Czech, T., and Chapelle, J. (1991), “Plasma assisted gas or steam depollution from hydrogen sulfide or mercaptans”, 10th Int. Symp. on Plasma Chem., Bochum, Germany, paper 3.2.22.Google Scholar
  11. Czernichowski, A. and Czech, T. (1991), “Plasma Assisted Incineration of some Organic Vapours in Gliding Discharges Reactor”, IIIrd International Symposium on High Pressure, Low Temperature Plasma Chemistry (HAKONE III), Strasbourg, France.Google Scholar
  12. Czernichowski, A., Lesueur, H., and Chapelle, J. (1992), “Electrically assisted partial oxidation of methane”, 9th World Hydrogen Energy Conf, Paris, 43–52.Google Scholar
  13. Fillon, G., Czernichowski, A., and Lesueur, H. (1990), “Procédé et dispositif de depollution de gaz pollués par des solvants”, French Patent Appl. 90.11278. Google Scholar
  14. Harry, J.E. and Yahya, A.A. (1990), “Chemical synthesis and waste destruction using high power glow discharges”, Plasma for Industry and Environment Technical Conf, Oxford, England, Paper 7.3Google Scholar
  15. Jörgensen, P., Chapelle, J., and Czernichowski, A. (1986), “Procédé de production de gaz réactifs riches en hydrogène et en oxyde de carbone”, French Patent 2 593 493. Google Scholar
  16. Jörgensen, P., Chapelle, J., Czernichowski, A., and Meguernes, K. (1987), “Procédé de conversion électrique de l’hydrogène sulfuré en hydrogène et en soufre et appareillage pour la mise en oeuvre de ce procédé”, French Patent 2 620 436. Google Scholar
  17. Jörgensen, P., Chapelle, J., Czernichowski, A., and Meguernes, K. (1987), “Hydrogen-rich reactive gases from an electric reactor and their use for heavy hydrocarbon conversion”, 8th Int. Symp. on Plasma Chemistry, Tokyo, 695–700.Google Scholar
  18. Jörgensen, P., Czernichowski, A., Chapelle, J., and Meguernes, K. (1989), “Plasma-chemical valorization of H2S”, 9th Int. Symp. on Plasma Chemistry, Pugnochiuso, Italy, 687–92.Google Scholar
  19. Krasheninnikov, E.G., Rusanov, V.D., Saniuk, S.V., and Fridman, A.A. (1986), “Dissociacia serovodoroda v VC razriade”, J. Techn. Phys. 56, 1104–1109.Google Scholar
  20. Lesueur, H., Czernichowski, A., and Chapelle, J. (1988), “Dispositif de génération de plasmas basse température par formation de décharges électriques glissantes”, French Patent 2 639 172. Google Scholar
  21. Lesueur, H., Czernichowski, A., and Chapelle, J. (1990), “Electro-brûleurs à arcs glissants”, Eur. Congr. on Thermal Plasma Process and Mat. Behavior at High Temp., Odeillo — Font Romeu, France, J. de Phys. (Suppl.) 18, 57–64.Google Scholar
  22. Lesueur, H., Czernichowski, A., and Chapelle, J. (1990), “Production du gaz de synthèse (CO + H2) à partir de l’oxydation du CH4 par CO2 dans un électroréacteur à décharges glissantes”, Eur. Congr. on Thermal Plasma Process and Mat. Behavior at High Temp., Odeillo — Font Romeu, France, J. de Phys. (Suppl.) 18, 49–56.Google Scholar
  23. Lesueur, H. (1991), “Générateurs d’arcs soufflés à basse température; application à la chimie des plasmas”, Thesis, Orléans University.Google Scholar
  24. Mao, T., Adanuvor, P., and White, R. E. (1990), “Mathematical modeling of an H2S removal electrolyzer”, J. Electrochem. Soc. 137, 2116 – 2123.CrossRefGoogle Scholar
  25. Mao, T., Anani, A., White, R. E., Srinivasan, S., and Appleby, A. J. (1991), “A modified electrochemical process for the decomposition of hydrogen sulfide in an aqueous alkaline solution”, J. Electrochem. Soc. 138, 1299–1303.CrossRefGoogle Scholar
  26. Meguernes, K., Chapelle, J., and Czernichowski, A. (1989), “Electrically assisted partial oxidation of methane”, 8th Int. Symp. on Plasma Chemistry, Tokyo, 693–697.Google Scholar
  27. Mizuta, S., Kondo, W., Fujii, K., Iida, H., Isshiki, S., Noguchi, H., Kikuchi, T., Sue, H., and Sakai, K. (1991), “Hydrogen production from hydrogen sulfide by the Fe-Cl hybrid process”, Ind. Eng. Chem. Res. 30, 1601–1608.CrossRefGoogle Scholar
  28. Müller, R., Kerker, L., Prob, G., and Peukert, C. (1987), 8th Int. Symp. on Plasma Chemistry, Tokyo, 660–665.Google Scholar
  29. Nicholas, J. E., Amodio, C. A., and Baker, M. J. (1979), “Kinetics and mechanism of decomposition of H2S, CH3SH and (CH3)2S in a radio-frequency pulse discharge”, J. Chem. Soc, Fraday Trans. 78, 1858–1875.Google Scholar
  30. Plummer, M. A. (1987), “Sulfur and hydrogen from H2S”, Hydrocarbon Processing, April, 38–40.Google Scholar
  31. Szymanski, A. and Podgorski, A. (1975), “Methane decomposition in high-frequency discharge in presence of hydrogen sulfide”, Z. Phys. Chemie, Leipzig 256, 765–769.Google Scholar
  32. Vastola, F. J. and Stacy, W. O. (1967), “The plasma induced reaction of hydrogen sulfide with hydrocarbons”, Am. Chem. Soc. 11, 234–237.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • A. Czernichowski
    • 1
  1. 1.Groupe de Recherches sur l’Energétique des Milieux IonisésUniversité d’OrléansOrléans cedex 2France

Personalised recommendations