Skip to main content

Gliding Discharge Reactor for H2s Valorization or Destruction

  • Conference paper
Non-Thermal Plasma Techniques for Pollution Control

Part of the book series: NATO ASI Series ((ASIG,volume 34))

Abstract

Hydrogen sulfide is present in the fluids issuing from under the ground, such as low- or high-energy geothermal fluids, natural gases such as light hydrocarbons, gases stored in natural underground reservoirs or fluids used for assisted oil recovery. The H2S is also present in the industrial gases such as those issuing from oil desulfurization, coking plants, rubber pyrolysis, metallurgy, paper mills or viscose industry, the gases issuing from the desulfurization of biogases, the tail gases issuing from the processes of depollution already installed, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Azizov, R. I., Vakar, A. K., Jivotov, V. K., Krasheninnikov, E. G., Krotov, M. F., Malkov, S. Ju., Novikov, G. I., Potapkin, B. V., Rusanov, V. D., and Fridman, A. A. (1985), “Plasmochimicheskoe poluchenie energonositelei (vodoroda, okisi ugleroda) v SVC razriade”, J. Techn. Phys. 55, 79–82.

    CAS  Google Scholar 

  • Bandermann, F and Harder, K. B. (1982), “Production of H2 via thermal decomposition of H2S and separation of H2 and H2S by pressure swing absorption”, Int. J. Hydrogen Energy 7, 471–475.

    Article  CAS  Google Scholar 

  • Bradley, J. N. and Dobson, (1967), J. Chem. Phys. 46, 2872.

    Article  CAS  Google Scholar 

  • Bagautdinov, A. Z., Jivotov, V. K., Eremenko, J. I., Kalachev, I. A., Musinov, S. A., Potapkin, B. V., Pampushka, A. M., Rusanov, V. D., Strelkova, M. I., Fridman, A. A., and Zoller, V. A. (1992), “Hydrogen sulfide dissociation in high pressure microwave discharge with power up to 1 MW”, 2nd European Congress on Thermal Plasma Processes, Paris, PS.2.10 (to be published in J. de Phys. (Paris).

    Google Scholar 

  • Civitano, L., Dinelli, G., Galimberti, I., Rea, M., and Turri, R. (1988), “Free radical production by corona discharges in a deNOx — deSOx reactor”, IX Int. Conf. on Gas Discharges and their Applications, Venice, Italy, 603–606.

    Google Scholar 

  • Czernichowski, A., Jörgensen, P., Lesueur, H., Chapelle, J., and Meguernes, K. (1990), “Destruction et valorisation complète de l’hydrogène sulfuré H2S par des procédés plasma- chimiques”, Eur. Congr. on Thermal Plasma Process and Mat. Behavior at High Temp., Odeillo — Font Romeu, France, J. de Phys. (Suppl.) 18, 65–71.

    Google Scholar 

  • Czernichowski, A., Lesueur, H., and Fillon, G. (1990), “Assistance électrique à la combustion des gaz d’étuves de peinture par dissipation d’énergie sous forme de décharges glissantes”, Workshop on Plasma Destr. of Wastes, Odeillo — Font Romeu, France.

    Google Scholar 

  • Czernichowski, A. and Lesueur, H. (1991), “Multi-electrodes high pressure gliding discharges reactor and its applications for some waste gas and vapor incineration”, Plasma Appl. to Waste Treatment, First Ann. INEL Conf, Idaho Falls, Idaho (USA).

    Google Scholar 

  • Czernichowski, A. and Lesueur, H. (1991), “Low Temperature Incineration of Some Volatile Organic Compounds by Gliding Discharges under Atmospheric Pressure”, 10th Int. Symp. on Plasma Chem., Bochum, Germany, Symp. Proa, 3.2.1.

    Google Scholar 

  • Czernichowski, A., Lesueur, H., Czech, T., and Chapelle, J. (1991), “Plasma assisted gas or steam depollution from hydrogen sulfide or mercaptans”, 10th Int. Symp. on Plasma Chem., Bochum, Germany, paper 3.2.22.

    Google Scholar 

  • Czernichowski, A. and Czech, T. (1991), “Plasma Assisted Incineration of some Organic Vapours in Gliding Discharges Reactor”, IIIrd International Symposium on High Pressure, Low Temperature Plasma Chemistry (HAKONE III), Strasbourg, France.

    Google Scholar 

  • Czernichowski, A., Lesueur, H., and Chapelle, J. (1992), “Electrically assisted partial oxidation of methane”, 9th World Hydrogen Energy Conf, Paris, 43–52.

    Google Scholar 

  • Fillon, G., Czernichowski, A., and Lesueur, H. (1990), “Procédé et dispositif de depollution de gaz pollués par des solvants”, French Patent Appl. 90.11278.

    Google Scholar 

  • Harry, J.E. and Yahya, A.A. (1990), “Chemical synthesis and waste destruction using high power glow discharges”, Plasma for Industry and Environment Technical Conf, Oxford, England, Paper 7.3

    Google Scholar 

  • Jörgensen, P., Chapelle, J., and Czernichowski, A. (1986), “Procédé de production de gaz réactifs riches en hydrogène et en oxyde de carbone”, French Patent 2 593 493.

    Google Scholar 

  • Jörgensen, P., Chapelle, J., Czernichowski, A., and Meguernes, K. (1987), “Procédé de conversion électrique de l’hydrogène sulfuré en hydrogène et en soufre et appareillage pour la mise en oeuvre de ce procédé”, French Patent 2 620 436.

    Google Scholar 

  • Jörgensen, P., Chapelle, J., Czernichowski, A., and Meguernes, K. (1987), “Hydrogen-rich reactive gases from an electric reactor and their use for heavy hydrocarbon conversion”, 8th Int. Symp. on Plasma Chemistry, Tokyo, 695–700.

    Google Scholar 

  • Jörgensen, P., Czernichowski, A., Chapelle, J., and Meguernes, K. (1989), “Plasma-chemical valorization of H2S”, 9th Int. Symp. on Plasma Chemistry, Pugnochiuso, Italy, 687–92.

    Google Scholar 

  • Krasheninnikov, E.G., Rusanov, V.D., Saniuk, S.V., and Fridman, A.A. (1986), “Dissociacia serovodoroda v VC razriade”, J. Techn. Phys. 56, 1104–1109.

    CAS  Google Scholar 

  • Lesueur, H., Czernichowski, A., and Chapelle, J. (1988), “Dispositif de génération de plasmas basse température par formation de décharges électriques glissantes”, French Patent 2 639 172.

    Google Scholar 

  • Lesueur, H., Czernichowski, A., and Chapelle, J. (1990), “Electro-brûleurs à arcs glissants”, Eur. Congr. on Thermal Plasma Process and Mat. Behavior at High Temp., Odeillo — Font Romeu, France, J. de Phys. (Suppl.) 18, 57–64.

    Google Scholar 

  • Lesueur, H., Czernichowski, A., and Chapelle, J. (1990), “Production du gaz de synthèse (CO + H2) à partir de l’oxydation du CH4 par CO2 dans un électroréacteur à décharges glissantes”, Eur. Congr. on Thermal Plasma Process and Mat. Behavior at High Temp., Odeillo — Font Romeu, France, J. de Phys. (Suppl.) 18, 49–56.

    Google Scholar 

  • Lesueur, H. (1991), “Générateurs d’arcs soufflés à basse température; application à la chimie des plasmas”, Thesis, Orléans University.

    Google Scholar 

  • Mao, T., Adanuvor, P., and White, R. E. (1990), “Mathematical modeling of an H2S removal electrolyzer”, J. Electrochem. Soc. 137, 2116 – 2123.

    Article  CAS  Google Scholar 

  • Mao, T., Anani, A., White, R. E., Srinivasan, S., and Appleby, A. J. (1991), “A modified electrochemical process for the decomposition of hydrogen sulfide in an aqueous alkaline solution”, J. Electrochem. Soc. 138, 1299–1303.

    Article  CAS  Google Scholar 

  • Meguernes, K., Chapelle, J., and Czernichowski, A. (1989), “Electrically assisted partial oxidation of methane”, 8th Int. Symp. on Plasma Chemistry, Tokyo, 693–697.

    Google Scholar 

  • Mizuta, S., Kondo, W., Fujii, K., Iida, H., Isshiki, S., Noguchi, H., Kikuchi, T., Sue, H., and Sakai, K. (1991), “Hydrogen production from hydrogen sulfide by the Fe-Cl hybrid process”, Ind. Eng. Chem. Res. 30, 1601–1608.

    Article  CAS  Google Scholar 

  • Müller, R., Kerker, L., Prob, G., and Peukert, C. (1987), 8th Int. Symp. on Plasma Chemistry, Tokyo, 660–665.

    Google Scholar 

  • Nicholas, J. E., Amodio, C. A., and Baker, M. J. (1979), “Kinetics and mechanism of decomposition of H2S, CH3SH and (CH3)2S in a radio-frequency pulse discharge”, J. Chem. Soc, Fraday Trans. 78, 1858–1875.

    Google Scholar 

  • Plummer, M. A. (1987), “Sulfur and hydrogen from H2S”, Hydrocarbon Processing, April, 38–40.

    Google Scholar 

  • Szymanski, A. and Podgorski, A. (1975), “Methane decomposition in high-frequency discharge in presence of hydrogen sulfide”, Z. Phys. Chemie, Leipzig 256, 765–769.

    Google Scholar 

  • Vastola, F. J. and Stacy, W. O. (1967), “The plasma induced reaction of hydrogen sulfide with hydrocarbons”, Am. Chem. Soc. 11, 234–237.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Czernichowski, A. (1993). Gliding Discharge Reactor for H2s Valorization or Destruction. In: Penetrante, B.M., Schultheis, S.E. (eds) Non-Thermal Plasma Techniques for Pollution Control. NATO ASI Series, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78476-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78476-7_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78478-1

  • Online ISBN: 978-3-642-78476-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics