Protein-Polyelectrolyte Complexes

  • Jiulin Xia
  • Paul L. Dubin


Proteins interact strongly with both synthetic and natural polyelectrolytes. Ample evidence exists for the binding of polyanions and polycations to proteins below and above their isoelectric points, respectively. These interactions may result in soluble complexes [1,2], complex coacervation [3–6], or the formation of amorphous precipitates [7–9]. The practical consequences of these phase changes may include the use of polyelectrolytes for protein separation [10–16] and immobilization or stabilization of enzymes in polyelectrolyte complexes [17–18]. In these two applications, the optimal physical states of the system are different. In the case of enzyme immobilization, highly deaggregated states may be less active. In purification or separation processes involving settling or filtration, aggregation is desirable. For efficient settling, close-packed aggregates are preferred, whereas in filtration processes more open-textured aggregates are needed to allow adequate solvent penetration. However, in both cases the aggregation should be essentially reversible.


Human Serum Albumin Dextran Sulfate Polyelectrolyte Complex Static Light Scattering Bovine Serum Albumin Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sacco D, Bonneaux F, Dellacherie E (1988) Int J Biol Macromol 10:305CrossRefGoogle Scholar
  2. 2.
    Dellacherie E (1991) Am Chem Soc, Div Polym Chem Prepr 32(1):602 and references thereinGoogle Scholar
  3. 3.
    Lenk T, Thies C (1987) In: Eisenberg A, Bailey FE (eds) Coulombic Interactions in Macromolecular Systems. American Chemical Society, Washington, DC, (1987) chap 8Google Scholar
  4. 4.
    Dubin P, Ross TD, Sharma I, Yegerlehner B (1987) In: Hinze WL, Armstrong DW (eds) Ordered media in chemical separations. American Chemical Society: Washington, DC, chap 8Google Scholar
  5. 5.
    Veis A (1991) Am Chem Soc, Div Polym Chem Prepr 32(1):596, and references thereinGoogle Scholar
  6. 6.
    Burgess DJ, Carless JE (1984) J Colloid Interface Sci 98:1Google Scholar
  7. 7.
    Nguyen TQ (1986) Makromol Chem 187:2567CrossRefGoogle Scholar
  8. 8.
    Sternberg M, Hershberger C (1974) Biochim Biophys Acta 342:195Google Scholar
  9. 9.
    Kokufuta E, Shimizu H, Nakamura I (1981) Macromolecules 14:1178CrossRefGoogle Scholar
  10. 10.
    Morawetz H, Hughes WL (1952) J Phys Chem 56:64CrossRefGoogle Scholar
  11. 11.
    Berdick M, Morawetz H (1954) J Biol Chem 206:959Google Scholar
  12. 12.
    Bozzano AG, Andrea G, Glatz CE (1991) J Membr Sci 55:181CrossRefGoogle Scholar
  13. 13.
    Clark KM, Glatz CE (1987) Biotechnol Prog 3:241CrossRefGoogle Scholar
  14. 14.
    Fisher RR, Glatz CE (1988) Biotechnol Bioeng 32:777CrossRefGoogle Scholar
  15. 15.
    Shieh J, Glatz CE (1991) Am Chem Soc, Div Polym Chem Prepr 32(1):606Google Scholar
  16. 16.
    Strege MA, Dubin PL, West JS, Daniel Flinta CD (1990) In: Ladisch M, Willson RC, Painton CC, Builder SE (eds) Protein purification: from molecular mechanisms to large-scale processes. American Chemical Society: Washington, DC, chap 5Google Scholar
  17. 17.
    Burgess RR, Jendrisak JJ (1975) Biochemistry 14:4634CrossRefGoogle Scholar
  18. 18.
    Margolin A, Sheratyuk SF, Izumrudov VA, Zezin AB, Kabanov VA (1985) Eur J Biochem 146:625CrossRefGoogle Scholar
  19. 19.
    Park JM, Muhoberac BB, Dubin P, Xia J (1992) Macromolecules 25:290CrossRefGoogle Scholar
  20. 20.
    Kokufuta E, Shimizu H, Nakamura I (1982) Macromolecules 15:1618CrossRefGoogle Scholar
  21. 21.
    Dubin P, Ahmed L, Xia J (1994) J Macromol Sci A31:17Google Scholar
  22. 22.
    Kabanov VA, Evdakov VP, Mustafaev MI, Antipina AD (1977) Molekulyarnaya Biologiya 11:582Google Scholar
  23. 23.
    Kuramoto N, Sakamoto M, Komiyama J (1984) Makromol Chem 185:1419CrossRefGoogle Scholar
  24. 24.
    Kabanov VA, Mustafaev MI, Belova VV, Evdakov VP (1978) Molekulyarnaya Biologiya 12:1264Google Scholar
  25. 25.
    Hummel JP, Dreyer WJ (1962) Biochim Biophys Acta 63:530CrossRefGoogle Scholar
  26. 26.
    Samsonov GV, Ponomareva RB, Luchko RG (1969) Biofizika 14:634Google Scholar
  27. 27.
    Barberousse V, Sacco D, Dellacherie E (1986) J Chromatography 369:244CrossRefGoogle Scholar
  28. 28.
    Pautov VD, Kuznetsova NP, Mishayeva RN, Anufriyeva YV (1983) Vysokomol soyed 25:1599Google Scholar
  29. 29.
    Cha HJ, Izumi T, Kokufuta E, Frank CW (1992) Am Chem Soc, Div Polym Chem Prepr 33:872Google Scholar
  30. 30.
    Cha HJ, Izumi T, Kokufuta E, Frank CW (1992)Google Scholar
  31. 31.
    Zimm BH (1948) J Chem Phys 16:1093CrossRefGoogle Scholar
  32. 32.
    Dauzenberg H, Rother G (1991) J Appl Polym Sci Appl Polym Symp 48:351CrossRefGoogle Scholar
  33. 33.
    Patkowski A, Bujalowski W, Chu B (1982) Biopolymers 21:1503CrossRefGoogle Scholar
  34. 34.
    Xia J, Dubin P, Dauzenberg H (1993) Langmuir 9:2015CrossRefGoogle Scholar
  35. 35.
    Pecora R (1976) Dynamic light scattering: Application of photon correlation spectroscopy. Plenum, New YorkGoogle Scholar
  36. 36.
    Schmitz KS (1990) An Introduction to Dynamic Light Scattering by Macromolecules. Academic Press, New YorkGoogle Scholar
  37. 37.
    Dubin PL, Murrell JL (1988) Macromolecules 21:2291CrossRefGoogle Scholar
  38. 38.
    Xia J, Dubin P, Muhoberac BB, Kim YS, Klimkowski V (1993) 97:4528.Google Scholar
  39. 39.
    Ware BR, Haas DD (1983) Fast Methods in Physical Biochemistry and Cell Biology; Shaafi RI, Fernandez SM (eds) Elsevier, AmsterdamGoogle Scholar
  40. 40.
    McQuarrie DA (1976) Statistical Mechanics. Harper and Row, New YorkGoogle Scholar
  41. 41.
    Ware BR (1974) Adv Colloid Interface Sci 4:1CrossRefGoogle Scholar
  42. 42.
    Ruckpaul L, Rein H, Janig GR, Pfeil W, Ristau O, Damaschun I, Damaschun H, Muller JJ, Purschel HV, Behlke V, Scheler W (1972) Studia Biophysica 34:81Google Scholar
  43. 43.
    Strelzowa SA, Tolstogusow WB (1977) Colloid & Polymer Sci 255:1054CrossRefGoogle Scholar
  44. 44.
    Xia J, Dubin P, unpublished resultsGoogle Scholar
  45. 45.
    Hiemenz PC (1986) Principles of Colloid and Surface Chemistry. Marcel Dekker, New YorkGoogle Scholar
  46. 46.
    Berdick M, Morawetz H (1953) J Phys Chem 57:959Google Scholar
  47. 47.
    Davis ME, Madura JD, Luty BA, McCammon JA (1991) Comp Phys Comm 62:187CrossRefGoogle Scholar
  48. 48.
    Davis RM, Russell WB (1986) J Polym Sci Polym Phys Ed 24:51Google Scholar
  49. 49.
    Zaitsev VS, Izumrudov VA, Zezin AB (1992) Polymer Science USSR 34:54Google Scholar
  50. 50.
    Zaitsev VS, Izumrudov VA, Zezin AB, Kabanov BA (1992) Doke Akad Nauk USSR 332:319Google Scholar
  51. 51.
    Anufrieva YV, Pautov VD, Kuznetsova NP, Lushchik VB, Krakovyak MG (1987) Polymer Science USSR 29:663CrossRefGoogle Scholar
  52. 52.
    Chen W, Walker S, Berg JC, (1992) Chemical Engineering Science 47:1039CrossRefGoogle Scholar
  53. 53.
    Jendrisak J (1987) Protein Purification Micro to Macro, Burgess, R (ed) Alan R, Liss, Inc. p. 75.Google Scholar
  54. 54.
    Hill RD, Zadow JG (1978) N Z J Diary Sci Technol 113:61Google Scholar
  55. 55.
    Sternberg M (1976) Process Biochemistry 11:11Google Scholar
  56. 56.
    Morawetz H, Sage H (1955) Arch Biochem Biophys 56:103CrossRefGoogle Scholar
  57. 57.
    Kokufuta E, Takahashi K (1990) Polymer 31:1177CrossRefGoogle Scholar
  58. 58.
    Larionova NI, Unksova LY, Mironov VA, Sakharov IYu, Kazanskaya NF, Berezin IV (1981) Vysokomol Soyed 23:1823Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Jiulin Xia
  • Paul L. Dubin

There are no affiliations available

Personalised recommendations