Phase Transitions in Adsorbates with Internal Quantum States

Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 76)


In principle, phase transitions in realistic systems at low temperatures should be studied including quantum effects. However, a full quantum treatment of all degrees of freedom in a simulation is restricted to small systems, if possible at all. In some cases, as is demonstrated for adsorbates, some degrees of freedom can still be modelled classically even at low temperatures, whereas only for the rest a quantum treatment is unavoidable. The path-integral Monte Carlo approach allows a systematic distinction between classical and quantum degrees of freedom in many-body systems. Using this technique in combination with finite-size methods, the complex phase diagram of a two-dimensional model fluid including various coexistences, tricritical and triple points can be obtained precisely. In a second step, a highly realistic model for N2 in the \( \left( {\sqrt 3 \times \sqrt 3 } \right) \) R30° structure on graphite is investigated along similar lines. The influence of quantum fluctuations on the orientational phase transition to the “2-in” herringbone phase and the decrease of the saturation order parameter are studied and compared to quasiclassical simulations using the Feynman-Hibbs effective potential.


Quantum Fluctuation Tricritical Point Quantum Simulation Classical Simulation Orientational Phase Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Monte Carlo Methods in Statistical Physics edited by K. Binder (Springer, Berlin, 1979); Applications of the Monte Carlo Methods in Statistical Physics edited by K. Binder (Springer, Berlin, 1984); Monte Carlo Methods in Condensed Matter Physics edited by K. Binder (Springer, Berlin, 1992).Google Scholar
  2. [2]
    Quantum Monte Carlo Methods edited by M. Suzuki (Springer, Berlin, 1987).Google Scholar
  3. [3]
    Quantum Simulations of Condensed Matter Phenomena edited by J. D. Doll and J. E. Gubernatis (World Scientific, Singapore, 1990).Google Scholar
  4. [4]
    W. von der Linden, Phys. Rep. 220, 53 (1992).CrossRefADSGoogle Scholar
  5. [5]
    K. E. Schmidt and D. M. Ceperley, in Monte Carlo Methods in Condensed Matter Physics edited by K. Binder (Springer, Berlin, 1992).Google Scholar
  6. [6]
    Phase Transitions in Surface Films 2 edited by H. Taub, G. Torzo, H. J. Lauter, and S. C. Fain Jr. (Plenum, New York, 1991);Excitations in 2-D and 3-D Quantum Fluids edited by A. F. G. Wyatt and H. J. Lauter (Plenum, New York, 1991).Google Scholar
  7. [7]
    H. Wiechert, Physica B 169, 144 (1991).CrossRefADSGoogle Scholar
  8. [8]
    D. Chandler and P. G. Wolynes, J. Chem. Phys. 74, 4078 (1981)CrossRefADSGoogle Scholar
  9. B. J. Berne and D. Thirumalai, Ann. Rev. Phys. Chem. 37, 401 (1986)CrossRefADSGoogle Scholar
  10. D. Chandler, in Liquids, Freezing and Glass Transition edited by J. P. Hansen, D. Levesque, and J. Zinn- Justin (Elsevier, Amsterdam, 1991).Google Scholar
  11. [9]
    D. Marx, P. Nielaba, and K. Binder, Phys. Rev. Lett. 67, 3124 (1991)CrossRefADSGoogle Scholar
  12. D. Marx, Surf. Sci. 272, 198 (1992)CrossRefADSGoogle Scholar
  13. D. Marx, P. Nielaba, and K. Binder, Phys. Rev. B (in press).Google Scholar
  14. [10]
    S. Sengupta, D. Marx, and P. Nielaba, Europhys. Lett. 20, 383 (1992).CrossRefADSGoogle Scholar
  15. [11]
    D. Marx, O. Opitz, P. Nielaba, and K. Binder, preprint.Google Scholar
  16. [12]
    Ph. de Smedt, P. Nielaba, J. L. Lebowitz, J. Talbot, and L. Dooms, Phys. Rev. A 38, 1381 (1988).CrossRefADSMathSciNetGoogle Scholar
  17. [13]
    R. Marx and B. Christoffer, Phys. Rev. B 37, 9518 (1988).CrossRefADSGoogle Scholar
  18. [14]
    M. Rovere, D. W. Heermann, and K. Binder, Europhys. Lett. 6, 585 (1988); J. Phys.: Condens. Matter 2, 7009 (1990); M. Rovere, P. Nielaba, and K. Binder, Z. Phys. B (in press).CrossRefADSGoogle Scholar
  19. [15]
    M. H. W. Chan, A. D. Migone, K. D. Miner, and Z. R. Li, Phys. Rev. B 30, 2681 (1984)CrossRefADSGoogle Scholar
  20. S.-K. Wang, J. C. Newton, R. Wang, H. Taub, J. R. Dennison, and Shechter, Phys. Rev. B 39, 10331 (1989).CrossRefADSGoogle Scholar
  21. [16]
    J. Eckert, W. D. Ellenson, J. B. Hastings, and L. Passell, Phys. Rev. Lett. 43, 1329 (1979)CrossRefADSGoogle Scholar
  22. R. D. Diehl, M. F. Toney, and S. C. Fain, Jr., Phys. Rev. Lett. 48, 177 (1982).CrossRefADSGoogle Scholar
  23. [17]
    A.D. Migone, H. K. Kim, M. H. W. Chan, J. Talbot, D. J. Tildesley, and W. A. Steele, Phys. Rev. Lett. 51, 192 (1983)CrossRefADSGoogle Scholar
  24. [18]
    A.J. Berlinsky and A. B. Harris, Phys. Rev. Lett. 40, 1579 (1978)CrossRefADSGoogle Scholar
  25. A. B. Harris and A. J. Berlinsky, Can. J. Phys. 57, 1852 (1979).CrossRefADSGoogle Scholar
  26. [19]
    S. F. O’Shea and M. L. Klein, Chem. Phys. Lett. 66, 381 (1979)CrossRefADSGoogle Scholar
  27. O. G. Mouritsen and A. J. Berlinsky, Phys. Rev. Lett. 48, 181 (1982)CrossRefADSGoogle Scholar
  28. Z.-X. Cai, Phys. Rev. B 43, 6163 (1991).CrossRefADSGoogle Scholar
  29. [20]
    J. Talbot, D. J. Tildesley, and W. A. Steele, Mol. Phys. 51, 1331 (1984)CrossRefADSGoogle Scholar
  30. Y. P. Joshi and D. J. Tildesley, Mol. Phys. 55, 999 (1985).CrossRefADSGoogle Scholar
  31. [21]
    Peters and M. L. Klein, Mol. Phys. 54, 895 (1985).CrossRefADSGoogle Scholar
  32. [22]
    E. Chacon and P. Tarazona, Phys. Rev. B 39, 7111 (1989).CrossRefADSGoogle Scholar
  33. [23]
    S. E. Roosevelt and L. W. Bruch, Phys. Rev. B 41, 12236 (1990).CrossRefADSGoogle Scholar
  34. [24]
    M. P. Allen and S. F. O’ Shea, Mol. Sim. 1, 47 (1987)CrossRefGoogle Scholar
  35. M. Roth and R. D. Etters, Phys. Rev. B 44, 6581 (1991)CrossRefADSGoogle Scholar
  36. T. H. M. van den Berg and A. van der Avoird, Phys. Rev. B 43, 13926 (1991).CrossRefADSGoogle Scholar
  37. [25]
    W. A. Steele, Surf. Sci. 36, 317 (1973).CrossRefADSGoogle Scholar
  38. [26]
    Marx and P. Nielaba, Phys. Rev. A 45, 8968 (1992). and preprint.CrossRefGoogle Scholar
  39. [27]
    Thirumalai, R. W. Hall, and B. J. Berne, J. Chem. Phys. 81, 2523 (1984)CrossRefADSGoogle Scholar
  40. L. M. Sese, Mol. Phys. 74, 177 (1991).CrossRefADSGoogle Scholar
  41. [28]
    J. D. Reger and A. P. Young, Phys. Rev. B 37, 5978 (1988)CrossRefADSGoogle Scholar
  42. J. D. Reger, J. Phys. II 259 (1991).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • D. Marx
    • 1
  1. 1.Institut für PhysikUniversität MainzMainzGermany

Personalised recommendations