Advertisement

Dynamic Anomalies and Scaling in the Infinite-Dimensional Hubbard Model

  • M. Jarrell
  • Th. Pruschke
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 76)

Abstract

Anomalies are found in the resistivity ρ, and NMR rate 1/T 1 of the infinite dimensional Hubbard model using quantum Monte Carlo and the non-crossing approximation. For temperatures greater than the Kondo scale T 0, 1/T 1 ~ a +bT ρ ~ c + dT (a, b, c, d constants). Similar behaviour has been seen above T c in the cuprate high temperature superconductors. For T ≲ T0 both ρ and 1/T 1 cross over to Fermi- liquid-like behaviour. In addition, ρ, 1/T 1, the susceptibility and the specific heat show scaling with T/T 0.

Keywords

Hubbard Model Fermi Liquid Hole Doping Quantum Monte Carlo Half Filling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.G. Bednorz and K.A. Miiller, Z. Phys. 64, 189(1986).CrossRefGoogle Scholar
  2. [2]
    For reviews of relevant experiments see C. H. Pennington and C. P. Slichter,Physical Properties of High Temperature Superconductors Ed. D. M. Ginsberg Vol.2; N. P. Ong ibid.; Y. Iye ibid. Vol. 3.Google Scholar
  3. [3]
    P.W. Anderson, Frontiers and Borderlines in Many Particle Physics, Proceedings• of the International School of Physics “Enrico Fermi” (Nortli Holland, Amsterdam, 1987), p. 1; P.W. Anderson, Science 235, 1196(1987).Google Scholar
  4. [4]
    C.M. Varma, P.B. Littlewood, S. Schmitt-Rink, E. Abrahams and A.E. Ruckenstein, Phys. Rev. Lett. 63, 1996(1989).CrossRefADSGoogle Scholar
  5. [5]
    J. Hubbard, Proc. R. Soc. a276, 238(1963)CrossRefADSGoogle Scholar
  6. M.C. Gutzwiller, Phys. Rev. Lett. 10, 159(1963)CrossRefADSGoogle Scholar
  7. J. Kanamori, Prog. Theor. Phys. 30, 257(1963).CrossRefADSGoogle Scholar
  8. [6]
    F. C. Zhang and T. M. Rice, Phys. Rev. B 37, 3759 (1988).CrossRefADSGoogle Scholar
  9. [7]
    T. Moriya, Y. Takahashi, K. Ueda, J. Phys. Soc. Jpn. 59, 2905(1990).CrossRefADSGoogle Scholar
  10. [8]
    E.H. Lieb and F.Y. Wu, Phys. Rev. Lett. 20, 1445 (1968)CrossRefADSGoogle Scholar
  11. H. Frahm and V.E. Korepin, Phys. Rev. B 42, 10533(1990)Google Scholar
  12. N. Kawakami and S.-K. Yang, Phys. Rev. Lett. 65, 2309(1990).CrossRefMATHADSMathSciNetGoogle Scholar
  13. [9]
    P.W. Anderson, Phys. Rev. Lett. 64, 1839(1990); 65 2306(1990); 67, 3844(1991).CrossRefADSGoogle Scholar
  14. [10]
    H.J. Schulz, Proceedings of the Adriatico Research Conference on Strongly Correlated Electron Systems II, edited by G. Baskaran, A.E. Ruckenstein, E. Tosatti and Yu Lu (World Scientific, Singapore, 1991); W. Metzner and C. Di Castro, preprint February 1993.Google Scholar
  15. [11]
    W. Metzner and D Vollhardt, Phys. Rev. Lett. 62, 324 (1989).CrossRefADSGoogle Scholar
  16. [12]
    E. Muller-Hartmann, Z. Phys. B 74, 507 (1989).CrossRefADSGoogle Scholar
  17. [13]
    P.G.J. van Dongen and D. Vollhardt, Phys. Rev. Lett. 65, 1663 (1990).CrossRefADSGoogle Scholar
  18. [14]
    U. Brandt and C. Mielsch, Z. Phys. B 75, 365, 1989; Z. Phys. B, 79, 295, 1990; Z. Phys. B, 82, 37, 1991.CrossRefADSGoogle Scholar
  19. [15]
    H. Schweitzer and G. Czycholl, Z. Phys. B 77, 327, 1990.Google Scholar
  20. [16]
    J.E. Hirsch and R.M. Fye, Phys. Rev. Lett. 56, 2521 (1986).CrossRefADSGoogle Scholar
  21. [17]
    Th. Pruschke, D.L. Cox and M. Jarrell, Phys. Rev. B (in press).Google Scholar
  22. [18]
    B. Menge and E. Müller-Hartmann, Z. Phys. B 82, 237 (1991).CrossRefADSGoogle Scholar
  23. [19]
    V. Janis and D. Vollhardt, submitted to Int. J. Mod. Phys. B.Google Scholar
  24. [20]
    M. Jarrell Computer Simulation Studies in Condensed Matter Physics //, Eds. D. P. Landau, K.K. Mon and H.-B. Schüttler (Springer-Verlag New York, 1990).Google Scholar
  25. [21]
    Th. Pruschke and N. Grewe, Z. Phys. B 74, 439(1989).CrossRefADSGoogle Scholar
  26. [22]
    M. Jarrell Phys. Rev. Lett. 69, 168(1992).CrossRefADSGoogle Scholar
  27. [23]
    M. Jarrell and Th. Pruschke, Z. Phys. B. 90, 187(1993).CrossRefADSGoogle Scholar
  28. [24]
    J.W. Serene and D.W. Hess, Phys. Rev. B44, 3391(1991).ADSGoogle Scholar
  29. [25]
    S.M. Hayden et al. Phys. Rev. Lett. 66, 821 (1991).CrossRefADSGoogle Scholar
  30. A.J. Millis and H. Monien, Phys. Rev. B 37, 3059 (1992)CrossRefADSGoogle Scholar
  31. [27]
    Y. Kitaoka, S. Ohsugi, K. Fujiwara, and K. Asayma, Physica C 185- 189, 98 (1991).CrossRefGoogle Scholar
  32. [28]
    T. Imai et al., Physica C 162–164, 169 (1989).Google Scholar
  33. [29]
    A.T. Imai, C. P. Slichter, A. P. Paulikas, and B. Veal, Preprint.Google Scholar
  34. [30]
    A. Khurana, Phys. Rev. Lett. 64, 1990(1990).CrossRefADSGoogle Scholar
  35. [31]
    H. Takagi et al. Phys. Rev. Lett. 69, 2975(1992).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • M. Jarrell
    • 1
  • Th. Pruschke
    • 2
  1. 1.Department of PhysicsUniversity of CincinnatiCincinnatiUSA
  2. 2.Institute für Theoretische PhysikUniversität RegensburgRegensburgGermany

Personalised recommendations