Skip to main content

“Paradoxical Arousal” During Isoflurane/Nitrous Oxide Anesthesia: Quantitative Topographical EEG Analysis

  • Chapter
Central Nervous System Monitoring in Anesthesia and Intensive Care

Abstract

Electroencephalogram (EEG) recordings have been used for the evaluation of drug effects on brain electrical activity, and numerous studies suggest that EEG measures may be useful for the assessment of depth of anesthesia [16, 22]. It has been shown that increases in depth of anesthesia may be reflected by the appearance of EEG slow-wave activity, and decreases in fast-wave activity [20]. Arousal reactions during emergence from anesthesia have been found to be associated with EEG desynchronization with a shift to higher frequencies. Controversy exists on the EEG response indicating intraoperative arousal phenomena. In anesthetized patients a shift to EEG delta activity concurrent with cardiac and respiratory irregularities has been interpreted as an indicator of insufficient depth of anesthesia. These intraoperative electrophysiological arousal phenomena have been addressed as “reverse” or “paradoxical” arousal phenomena [1]. However, brain electrical activity is modulated not only by drug effects but also by changes in respiratory and hemodynamic parameters, body temperature, and exogenous stimuli. Previous studies have shown that EEG high voltage slow waves may also occur spontaneously or in response to auditory or painful stimulation [6, 25].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bimar J, Bell ville JW (1977) Arousal reactions during anesthesia in man. Anesthesiology 47:449–454

    Article  PubMed  CAS  Google Scholar 

  2. Bischoff P, Kochs E, Droese D, Meyer-Moldenhauer WH, Schulte am Esch J (1993) Topographisch quantitative EEG-Analyse der paradoxen Arousalreaktion: EEG- Veränderungen bei urologischen Eingriffen unter Isofluran/N20 Narkose. Anaes- thesist 42:142–148

    CAS  Google Scholar 

  3. Brazier MA (1954) The action of anaesthetics on the nervous system with special reference to the brain stem reticular system. In: Delafresnaye JF (ed) Brain mechanisms and consciousness. Blackwell, Oxford, pp 163–199

    Google Scholar 

  4. Clark DL, Hosick EC, Adam N, Castro AD, Rosner BS, Neigh JL (1973) Neural effects of isoflurane (forane) in man. Anesthesiology 39:261–270

    Article  PubMed  CAS  Google Scholar 

  5. Drumond JC, Brann CA, Perkins DE, Wolfe DE (1991) A comparison of median frequency, spectral edge frequency band power ratio, total power, and dominance shift in the determination of depth of anesthesia. Acta Anaesthesiol Scand 35:693–699

    Article  Google Scholar 

  6. Eger EI, Stevens WC, Cromwell TH (1971) The electroencephalogram in man anesthetized with forane. Anesthesiology 35:504–508

    Article  PubMed  CAS  Google Scholar 

  7. Engelhardt W, Carl G, Dierks T, Maurer K (1991) Electroencephalographic mapping during isoflurane anesthesia for treatment of mental depression. J Clin Moni 7:23–29

    Article  Google Scholar 

  8. Evans BM (1976) Pattern of arousal in comatose patients. J Neurol Neurosurg Psychiatry 39:392–402

    Article  PubMed  CAS  Google Scholar 

  9. Geerts P, Noorduin H, Yanden Bussche G, Heykants J (1987) Practical aspects of alfentanil infusion. Eur J Anaesth [Suppl] 1:25–29

    CAS  Google Scholar 

  10. Hung OR, Yarvel JR, Shafer SL, Stanski DR (1992) Thiopental pharmacodynamics. II. Quantitation of clinical and electroencephalgraphic depth of anesthesia. Anesthesiology 77:237–244

    Article  PubMed  CAS  Google Scholar 

  11. Kochs E, Hoffman WE, Werner C, Albrecht RF, Schulte am Esch J (1993) Cerebral blood flow velocity in relation to cerebral blood flow, cerebral metabolic rate for oxygen, and electroencephalogram analysis in dogs. Anesth Analg 76:1222–1226

    PubMed  CAS  Google Scholar 

  12. Kubicki St, Haas J (1975) Elektro-klinische Korrelationen bei Komata unterschiedlicher Genese. Aktuel Neurol 2:103–112

    Google Scholar 

  13. Li CL, Jasper H, Henderson L (1952) The effect of arousal mechanisms on various forms of abnormality in the electroencephalogram. Electroenceph Clin Neur- ophysiol 4:512–526

    Google Scholar 

  14. Madsen JB, Cold GE, Hansen ES, Bardrum B (1987) The effect of isoflurane on cerebral blood flow and metabolism in humans during craniotomy for small supratentorial cerebral tumors. Anesthesiology 66:332–336

    Article  PubMed  CAS  Google Scholar 

  15. Moruzzi G, Magoun HW (1949) Brain stem reticular formation and activation of the EEG. Electroenceph Clin Neurophysiol 1:455–473

    PubMed  CAS  Google Scholar 

  16. Pichlmayr, I, Lips U (1983) EEG Monitoring in anesthesiology and intensive care. Neuropsychobiology 10:239–248

    Article  PubMed  CAS  Google Scholar 

  17. Prys-Roberts C (1987) Anesthesia: a practical or impossible construct? (editorial). Br J Anaesth 59:1341–1345

    Article  PubMed  CAS  Google Scholar 

  18. Rampil IJ, Matteo RS (1987) Changes in EEG spectral edge frequency correlate with the hemodynamic response to laryngoscopy and intubation. Anesthesiology 67:139–142

    Article  PubMed  CAS  Google Scholar 

  19. Schwartz MS, Scott DF (1978) Pathological stimulus slow wave arousal responses in the EEG. Acta Neurol Scand 57:300–304

    Article  PubMed  CAS  Google Scholar 

  20. Schwilden H, Stoeckel H (1980) Untersuchungen über verschiedene EEG-Para- meter als Indikatoren des Narkosezustands. Der Median als quantitatives Maß der Narkosetiefe. Anästh Intensivther Notfallmed 15:279–286

    Article  PubMed  CAS  Google Scholar 

  21. Schwilden H, Stoeckel H (1985) The derivation of EEG parameters for modelling and control of anaesthetic drug effect. In: Stoeckel H (ed) Quantitation, modelling and control in anaesthesia. Thieme, pp 160–168

    Google Scholar 

  22. Schwilden H, Schüttler J, Stoeckel H (1987) Closed-loop feedback control of methohexitone anesthesia by quantitative EEG analysis in humans. Anesthesiology 67:341–347

    Article  PubMed  CAS  Google Scholar 

  23. Shah NK, Long CW, Bedford RF (1988) Delta shift: and EEG sign of awakening during light isoflurane anesthesia. Anesth Analg 67:S206

    Article  Google Scholar 

  24. Todd MM, Drummond JC (1984) A comparison of the cerebrovascular and metabolic effects of halothane and isoflurane in the cat. Anesthesiology 60:276–282

    Article  PubMed  CAS  Google Scholar 

  25. Zschocke S (1986) Diagnostic and prognostic value of EEG in brainstem lesions including spectral analysis. In: Kunze K, Zangemeister WH, Arlt A (eds) Clinical problems of brainstem disorders. Thieme, Stuttgart, pp 145–156

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bischoff, P., Kochs, E., Schulte am Esch, J. (1986). “Paradoxical Arousal” During Isoflurane/Nitrous Oxide Anesthesia: Quantitative Topographical EEG Analysis. In: Schulte am Esch, J., Kochs, E. (eds) Central Nervous System Monitoring in Anesthesia and Intensive Care. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78441-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78441-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78443-9

  • Online ISBN: 978-3-642-78441-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics