Skip to main content
  • 83 Accesses

Abstract

Even in an age of contracting medical resources, intraoperative EEG monitoring is gaining increasing acceptance as a tool to identify the need for intervention. However, central nervous activity is characterized by very rapid fluctuations. Neurologic injury can happen so quickly that most tests of cerebral well-being do not give useful information in time to intervene. Offline processing techniques for sophisticated derivation of EEG parameters are too slow to provide effective monitoring. To be effective, monitors must be able to detect a change soon enough for something to be done immediately; even 2 h later is too late.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arom KV, Cohen DE, Strobl FT (1989) Effect of intraoperative intervention on neurological outcome based on electroencephalographic monitoring during cardiopulmonary bypass. Ann Thorac Surg 48:476–483

    Article  PubMed  CAS  Google Scholar 

  • Ashida H, Tatsuno J, Okamoto J, Maru E (1984) Field mapping of EEG by unbiased polynomial interpolation. Comput Biomed Res 17:267–276

    Article  PubMed  CAS  Google Scholar 

  • Barlow JS (1986) Artifact processing (rejection and minimization) in EEG data processing. In: Lopes da Silva FH, Storm van Leeuwen W, Remond A (eds) Clinical applications of computer analysis of EEG and other neurophysiological variables, vol 2. Elsevier, Amsterdam, pp 15–62. (Handbook of electroencephalography and clinical neurophysiology)

    Google Scholar 

  • Bashein G, Nessly ML, Bledsoe SW, et al. (1992) Electroencephalography during surgery with cardiopulmonary bypass and hypothermia. Anesthesiology 76:878–891

    Article  PubMed  CAS  Google Scholar 

  • Bloom MJ (1993a) EEG changes associated with the start of cardiopulmonary bypass. Anesth Analg 76:S21–22

    Google Scholar 

  • Bloom MJ (1993b) Techniques to identify clinical contexts during automated data analysis. Int. J Clin Monit Comput 10:17–22

    Article  PubMed  CAS  Google Scholar 

  • Bloom MJ, Schwartz DM, Berkowitz HD, Pratt RE Jr (1990) DSA processing of EEG is an effective in CEA. Presented at the Society of Neurosurgical Anesthesia and Critical Care Meeting, Waikiki, Hawaii, 14–15 March

    Google Scholar 

  • Bricolo A, Turazzi S, Faccioli F, Oroizzi F, Sciarretta G, Erculiani P (1978) Clinical application of compressed spectral array in long-term EEG monitoring of comatose patients. Electroenceph Clin Neurophysiol 45:211–225

    Article  PubMed  CAS  Google Scholar 

  • Cloughesy TF, Nuwer MR, Hoch D, Yinuela F, Duckwler G, Martin N (1993) Monitoring carotid test occlusions with continuous EEG and clinical examination. J Clin Neurophysiol 10(3):363–369

    Article  PubMed  CAS  Google Scholar 

  • Demetrescu M, Kavan E, Smith N (1981) Monitoring the brain condition by advanced EEG. Anesthesiology 55:A130

    Google Scholar 

  • Duffy FH, Bartels PH, Burchfield JL (1981) Significant probability maping: an aid in the topographic analysis of brain electrical activity. Electroenceph Clin Neurophysiol 51:455–462

    Article  PubMed  CAS  Google Scholar 

  • Edmonds HL Jr, Griffiths LK, Shields CB Online statistical analysis of the EEG predicts postoperative neurologic dysfunction during cardiopulmonary bypass (CPB) surgery. 12th annual meeting of the Society of Cardiovascular Anesthesiologists, Orlando, FL, 13–16 May

    Google Scholar 

  • Edmonds HL Jr, Griffiths LK, van der Laken J, Slater AD (1992) Quantitative electroen- cephalographic monitoring during myocardial revascularization predicts postoperative disorientation and improves outcome. J Thorac Cardiovasc Surg 103:555–563

    PubMed  Google Scholar 

  • El-Fiki M, Fish KJ (1987) Is the EEG a useful monitor during cardiac surgery? Case Report. Anesthesiology 67:575–578

    Article  PubMed  CAS  Google Scholar 

  • Gish H, Cochran D (1988) Generalized coherence. Proc IEEE ICASSP, New York, pp 2745–2747

    Google Scholar 

  • Gregory TK, Pettus DC (1986) An eleetroencephalographic processing algorithm specifically intended for analysis of cerebral electrical activity. J Clin Monit 2:190–197

    Article  PubMed  CAS  Google Scholar 

  • Hanowell LH, Soriano S, Bennett HL (1992) EEG power changes are more sensitive than spectral edge frequency variation for detection of cerebral ischemia during carotid artery surgery: a prospective assessment of processed EEG monitoring. J Cardiothorac Vase Anesth 6:292–294

    Article  CAS  Google Scholar 

  • Jansen BH (1986) Quantitative EEG analysis in renal disease. In: Lopes da Silva FH, Storm van Leeuwen W, Remond A (eds) Clinical applications of computer analysis of EEG and other neurophysiological variables, vol 2. pp 239–256, Elsevier, Amsterdam (Hand book of Electroencephalography and Clinical Neurophysiology, Chap. 8)

    Google Scholar 

  • John ER (1980) Developmental equations for the Electroencephalogram. Science 210:1255–1258

    Article  PubMed  CAS  Google Scholar 

  • Kalkman CJ, Boezeman EH, Ribberink AA, Oosting J, Deen L, Bovil JG (1991) Influence of changes in arterial carbon dioxide tension on the electroencephalogram and posterior tibial nerve somatosensory cortical evoked potentials during Alfentanil/nitrous oxide anesthesia. Anesthesiology 75:68–74

    Article  PubMed  CAS  Google Scholar 

  • Kearse L, Saini V, deBros F, Chamoun N (1991) Bispectral analysis may predict anesthetic depth during narcotic induction. Anesthesiology 75:A175

    Article  Google Scholar 

  • Kochs E et al. (1990) Modulation of pain-related somatosensory evoked potentials by general anesthesia. Anesth Analg 71:225

    Article  PubMed  CAS  Google Scholar 

  • Kopruner V, Pfurtscheler G (1984) Multiparametric Asymmetry Score (MAS) distinction between normal and ischemic brains. EEG Clin Neurophysiol 57:343

    Article  CAS  Google Scholar 

  • Krieger DN, Burk G, Sclabassi RJ (1991) NeuroNet: a distributed real-time system for monitoring neurophysiological function in the medical environment. Computer 24:45–55

    Article  Google Scholar 

  • Levy WJ (1984) Intraoperative EEG patterns: implications for EEG monitoring. Anesthesiology 60:430–434

    Article  PubMed  CAS  Google Scholar 

  • Levy WJ (1986) Power spectrum correlates of changes in consciousness during anesthetic induction with enflurane. Anesthesiology 64:688–693

    Article  PubMed  CAS  Google Scholar 

  • Levy WJ, Parcella P (1987) Electroencephalographic evidence of cerebral ischemia during acute extracorporeal hypoperfusion. Cardiothorac Anesth 1:300–304

    Article  CAS  Google Scholar 

  • Levy WJ, Shapiro HM, Maruchak G, Meathe E (1980) Automated EEG processing for intraoperative monitoring: a comparison of techniques. Anesthesiology 53:223–236

    Article  PubMed  CAS  Google Scholar 

  • Leib JP, Sperling MR, Mendius JR, Smoker CE, Englel J Jr (1986) Visual versus computer evaluation of thiopental-induced EEG changes in temporal lobe epilepsy. Electroenceph Clin Neurophysiol 63:395–407

    Article  Google Scholar 

  • Long CW, Shah NK, Loughlin C, Spydell J, Bedford RF (1989) A comparison of EEG determinants of near-awakening from isoflurane and fentanyl anesthesia. Anesth Analg 69:169–173

    PubMed  CAS  Google Scholar 

  • Lopes de Silva FH (1981) Pattern recognition and automatic EEG analysis. Trends Newosci 297

    Google Scholar 

  • Matthis P, Scheffner D, Benninger C (1981) Spectral analysis of the EEG: comparison of various spectral parameters. Electroenceph Clin Neurophysiol 52:218–221

    Article  PubMed  CAS  Google Scholar 

  • Maynard DE, Jenkinson JL (1984) The cerebral function analysing monitor. Anesthesia 39:678–690

    Article  CAS  Google Scholar 

  • Moberg (1987) Electroencephalographic and evoked potential processing for continuous monitoring in the intensive care unit and operating room. J Clin Monit 3:332

    Google Scholar 

  • Myers RR, Stockard J J, Saidman LJ (1977) Monitoring of cerebral perfusion during anesthesia by time-compressed Fourier analysis of the electroencephalogram. Stroke 8:331–337

    Article  PubMed  CAS  Google Scholar 

  • Nagata K, Mizukami M, Araki G, Kawase T, Hirano M (1982) Topographic electroencephalographic study of cerebral infarction using computer mapping of the EEG. J Cereb Blood Flow Metab 2:79–88

    Article  PubMed  CAS  Google Scholar 

  • Nussmeier N, Arlund C, Slogoff S (1986) Neuropsychiatric complications after cardiopulmonary bypass: cerebral protection by a barbiturate. Anesthesiology 64:165–170

    Article  PubMed  CAS  Google Scholar 

  • Prichep LS, John ER (1986) Neurometries: clinical applications. In Lopes da Silva FH, Storm van Leeuwen W, Remond A (eds) Clinical applications of computer analysis of EEG and other neurophysiological variables, vol 2. Elsevier, Amsterdam, pp 153–170 (Handbook of Electroencephalography and Clinical Neurophysiology, Chap. 5)

    Google Scholar 

  • Pronk RAF, Simons AJR (1984) Processing of the electroencephalogram in cardiac surgery. Comp methods Programs Biomed 18:181–190

    Article  CAS  Google Scholar 

  • Rosner G, Graf R, Kataoka K, Heiss WD (1986) Selective functional vulnerability of cortical neurons following transient MCA-occlusion in the cat. Stroke 17:1

    Article  Google Scholar 

  • Sainio K, Stenberg D, Keskimaki I, Muuronen A, Kaste M (1983) Visual and spectral EEG analysis in the evaluation of the outcome in patients with ischemic brain infarction. Electroenceph Clin Neurophysiol 56:117–124

    Article  PubMed  CAS  Google Scholar 

  • Salerno TA, Lince DP, White DN, et al. (1978) Monitoring of electroencephalogram during open-heart surgery. J Thorac Cardiovasc Surg 76:97–110

    PubMed  CAS  Google Scholar 

  • Schuttler J, Schwilden H, Stoeckel H (1983) Pharmacokinetics as applied to total intravenous anaesthesia. Practical implications. Anaesthesia 38:53–56

    Google Scholar 

  • Schuttler J, Schwilden H, Stoeckel H (1985) Pharmacokinetic and pharmacodynamic modeling of propofol (Diprivan) in volunteers and surgical patients. Postgrad Med J 61:53–54

    Article  PubMed  Google Scholar 

  • Schwilden H, Stoeckel H, Schuttler(1989) Closed-loop feedback control of propofol anesthesia by quantitative EEG analysis in humans. Br J Anaesth 2:290–296

    Article  Google Scholar 

  • Sclabassi RJ, Sun M, Krieger SN, Scher MS (1990) Time-frequency analysis of the EEG signal. Proc ISSPA 935–938

    Google Scholar 

  • Sclabassi RJ, Sun M, Krieger DN, et al. (1992) Time-frequency domain problems in the neurosciences. In: Boashash B (ed) Time-frequency signal analysis. Longman Chesire, Australia, pp 498–519

    Google Scholar 

  • Scott JC, Stanski DR, Ponganis KV (1983) Quantitation of fentanyl’s effect on the brain using the EEG. Anesthesiology 59:A370

    Google Scholar 

  • Sebel PS, Bowles S, Saini V, Chamoun N (1991) Accuracy of EEG in predicting movement at incision during isoflurane anesthesia. Anesthesiology 75:A446

    Article  Google Scholar 

  • Snyder MM, Core RC, Watt RC (1988) A comparison of derived parameters used in electroencephalography. Anesth Analg 67:S214

    Article  Google Scholar 

  • Sotaniemi KA, Sulg I A, Hokkanen TE (1980) Quantitative EEG as a measure of cerebral dysfunction before and after open-heart surgery. Electroenceph Clin Neurophysiol 50:81–95

    Article  PubMed  CAS  Google Scholar 

  • Spackman TN, Faust RJ, Cucchiara RF, Sharbrough FW (1987) A comparison of aperiodic analysis of the EEG with standard EEG and cerebral blood flow for detection of ischemia. Anesthesiology 66:229–231

    Article  PubMed  CAS  Google Scholar 

  • Thomsen CE, Rosenfalck A, Christensen KN (1991) Assessment of anaesthetic depth by clustering analysis and autoregressive modelling of electroencephalograms. Comput Methods Programs Biomed 34:125–138

    Article  PubMed  CAS  Google Scholar 

  • Tolonen U, Sulg IA (1981) Comparison of quantitative EEG parameters from four different analysis techniques in evaluation of relationships between EEG and CBF in brain infarction. Electroenceph Clin Neurophysiol 51:177–185

    Article  PubMed  CAS  Google Scholar 

  • Vernon J, Bowles S, Sebel PS, Chamoun N (1992) EEG bispectrum predicts movement at incision during isoflurane or propofol anesthesia. Anesthesiology 77:A502

    Article  Google Scholar 

  • Veselis RA, Carlon GC, Bedford RF (1989) Spectral edge frequency correlates with sedation level in icu patients receiving continuous IV midazolam. Anesthesiology 17:157

    Article  Google Scholar 

  • Watt RC, Hameroff SR (1988) Phase space electroencephalography (EEG): a new mode of intraoperative EEG analysis. Int J Clin Monit Comput 5:3–13

    Article  PubMed  CAS  Google Scholar 

  • William GW, Luders HO, Brickner A, Goormastic M, Klass DW (1985) Interobserver variability in EEG interpretation. Neurology 35:1714–1719

    Google Scholar 

  • Wolf AL, Levi L, Marmarou A, Ward JD, Muizelaar PJ, Choi S, Young H, Rigamonti D, Robinson WL (1993) Effect of THAM upon outcome in severe head injury: a randomized prospective clinical trial. J Neurosurg 78 (1): 54–59

    Article  PubMed  CAS  Google Scholar 

  • Zaidan JR, Klochany A, William MM, Ziegler JS, Harless DM, Andrews RB (1991) Effect of thiopental on neurologic outcome following coronary artery bypass grafting. Anesthesiology 74:406–411

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bloom, M.J. (1994). The Use of Processed EEG in the Operating Room. In: Schulte am Esch, J., Kochs, E. (eds) Central Nervous System Monitoring in Anesthesia and Intensive Care. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78441-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78441-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78443-9

  • Online ISBN: 978-3-642-78441-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics