Skip to main content

Electroencephalographic Feedback Control of Anesthetic Drug Administration

  • Chapter
Central Nervous System Monitoring in Anesthesia and Intensive Care

Abstract

The relationship between drug dosing and the induced time course of effect is of major interest for the anesthetist when aiming at inducing and maintaining an anesthetic state. Especially when the patient is treated with neuromuscular blocking agents, there are only very limited apparent clinical signs for detecting awareness. A reliable estimation and prediction of drug dosing to prevent intra-operative awareness is therefore required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ausems EM, Hug CC, de Lange S (1983) Variable rate infusion of alfentanil to nitrous oxide anesthesia for general surgery. Anesth Analg 62:982–986

    Article  PubMed  CAS  Google Scholar 

  2. Ausems EM, Hug CC, Stanski DR, Burm AGL (1986) Plasma concentrations of alfentanil required to supplement nitrous oxide anesthesia for general surgery. Anesthesiology 65:362–373

    Article  PubMed  CAS  Google Scholar 

  3. Barrett R, Graham GG, Torda TA (1984) The influence of sampling site upon the distribution phase kinetics of thiopentone. Anaesth Intensive Care 12:5–9

    PubMed  CAS  Google Scholar 

  4. Bellville JW, Attura GM (1957) Servo-control of general anesthesia. Science 126:827

    Article  PubMed  CAS  Google Scholar 

  5. Bellville JW, Fennel PJ, Murphy T (1960) The relative potencies of methohexital and thiopental. J Pharmacol Exp Ther 129:108

    PubMed  CAS  Google Scholar 

  6. Bickford RG (1950) Automatic electroencephalographic control of general anesthesia. EEG Clin Neurophysiol 2:93

    Article  Google Scholar 

  7. Bickford RG (1951) Use of frequency discrimination in the automatic electroencephalographic control of anesthesia (servo-anesthesia). EEG Clin Neurophysiol 3:83

    Article  CAS  Google Scholar 

  8. Brazier MAB, Finesinger JE (1945) Action of barbiturates on cerebral cortex: electroencephalographic studies. Arch Neurol Psychiatrie 53:51

    CAS  Google Scholar 

  9. Desiderio DP, Thorne AC (1990) Awareness and general anesthesia. Acta Anaes- thesiol Scand 34 (S92): 45–50

    Google Scholar 

  10. Eger EI II, Saidman LJ, Brandstater B (1965) Minimum alveolar concentration: a standard of anesthetic potency. Anesthesiology 26:756–763

    Article  PubMed  Google Scholar 

  11. Fink M (1977) Quantitative EEG analysis and psychopharmacology. In: Remond S (ed) EEG informatics. A didatic review of methods and application of EEG data processing. Elsevier/North Holland, Amsterdam, p 301

    Google Scholar 

  12. Gesink van der Veer BJ, Burm AGL, Hennis PJ, Bovill JG (1989) Alfentanil requirement in Crohn’s disease. Anaesthesia 44:209–211

    Article  Google Scholar 

  13. Gibbs FA, Gibbs EL, Lennox WG (1937) Effect on the electro-encephalogram of certain drugs which influence nervous activity. Arch Intern Med 60:154

    Article  Google Scholar 

  14. Grassberger P, Procaccia I (1983) Measuring the strangeness of strange attractors. Physica 9D: 189–209

    Google Scholar 

  15. Herrmann WM (1982) Development and critical evaluation of an objektive procedure for the electroencephalographic classification of psychotropic drugs. In: Herrmann WM (ed) Electroencephalography in drug research. Fischer, Stuttgart, p 249

    Google Scholar 

  16. Holford NHG, Sheiner LB (1981) Understanding the dose-effect relationship. Clin Pharmacokinet 6:429–453

    Article  PubMed  CAS  Google Scholar 

  17. Hull CJ, van Beem HBH, McLeod K (1978) A pharmacodynamic model of pancuronium. Br J Anaesth 50:1113–1123

    Article  PubMed  CAS  Google Scholar 

  18. Kaplan DT, Glass L (1992) Direct test for determinism in a time series. Phys Rev Lett 68:427–430

    Article  PubMed  Google Scholar 

  19. Keeri-Szanto M (1961) Anesthetic time/dose curves. The limiting factor in the utilization of intravenous anesthetics during surgical operations. Clin Pharmacol Ther 2:45–51

    PubMed  CAS  Google Scholar 

  20. Lemmens HJM, Burm AGL, Bovill JG, Hennis PJ (1988) Pharmacodynamics of alfentanil as a supplement to nitrous oxide anaesthesia in the elderly. Br J Anaesth 61:173–179

    Article  PubMed  CAS  Google Scholar 

  21. Levy WJ, Shapiro HM, Maruchak G (1980) Automated EEG processing for intraoperative monitoring - a comparison of techniques. Anesthesiology 53:223–236

    Article  PubMed  CAS  Google Scholar 

  22. Merkel G, Eger EI II (1963) A comparative study of halothane and halopropane anesthesia including a method for determining equipotency. Anesthesiology 24:346–352

    Article  PubMed  CAS  Google Scholar 

  23. Prys-Roberts C, Davis JR, Calverley RK, Goodman NW (1983) Haemodynamic effects on infusions of diisopropyl phenol (ICI35868) during nitrous oxide anaesthesia in man. Br J Anaesth 55:105–111

    Article  PubMed  CAS  Google Scholar 

  24. Quasha AL, Eger EI II, Tinker JH (1980) Determination and applications of MAC. Anesthesiology 53:315–334

    Article  PubMed  CAS  Google Scholar 

  25. Rampil I J, Sasse FJ, Smith NT (1980) Spectral edge frequency - a new correlate of anesthetic depth. Anesthesiology 53:S12

    Article  Google Scholar 

  26. Richard W, Bromley D, Pickett D, Passamante A (1993) Recognizing determinism in a time series. Phys Rev Lett 70:580–583

    Article  Google Scholar 

  27. Schüttler J, Stoeckel H (1982) Alfentanil (R 39209). Ein neues kurzwirkendes Opioid. Pharmakokinetik and erste klinische Erfahrungen. Anaesthesist 31:10–14

    PubMed  Google Scholar 

  28. Schüttler J, Schwilden H, Stoeckel H (1983) Pharmacokinetics as applied to total intravenous anaesthesia. Practical implications. Anaesthesia [Suppl] 38:53–56

    Google Scholar 

  29. Schüttler J, Schwilden H, Stoeckel H (1985) Infusion strategies to investigate the pharmacokinetics and pharmacodynamics of hypnotic drugs: etomidate as an example. Eur J Anaesthesiol 2:133–142

    PubMed  Google Scholar 

  30. Schüttler J, Schwilden H, Stoeckel H (1985) Pharmacokinetic and pharmacodynamic modelling of propofol (‘diprivan’) in volunteers and surgical patient. Postgrad Med Journal 61 [Suppl 3]:53–54

    Google Scholar 

  31. Schüttler J, Stoeckel H, Schwilden H, Lauven PM (1986) Pharmakokinetisch begründete Infusionsmodelle für die Narkoseführung mit Alfentanil. In: Doenicke A (ed) Alfentanil. Springer, Berlin Heidelberg New York, pp 42–51

    Google Scholar 

  32. Schwilden H, Stoeckel H (1980) Untersuchungen über verschiedene EEG-Para- meter als Indikatoren des Narkosezustandes, Der Median alo quantitative Maß der Narkosetiefe. Anaesth Intensivther Notfallmed 15:279–286

    Article  CAS  Google Scholar 

  33. Schwilden H, Schüttler J, Stoeckel H (1983) Pharmacokinetics as applied to total intravenous anaesthesia. Theoretical considerations. Anaesthesia [Suppl] 38:51–52

    CAS  Google Scholar 

  34. Schwilden H, Schüttler J, Stoeckel H (1985) Quantitation of the EEG and pharmacodynamic modelling of hypnotic drugs: etomidate as an example. Eur J Anaesthesiol 2:121–131

    PubMed  CAS  Google Scholar 

  35. Schwilden H, Stoeckel H, Schüttler J, Lauven PM (1986) Pharmacological models and their use in clinical anaesthesia. Eur J Anaesthesiol 3:175–208

    PubMed  CAS  Google Scholar 

  36. Schwilden H, Stoeckel H (1987) Quantitative EEG analysis during anaesthesia with isoflurane in nitrous oxide at 1.3 and 1.5 MAC. Br J Anaesth 59:738–745

    Article  PubMed  CAS  Google Scholar 

  37. Schwilden H, Schüttler J, Stoeckel H (1987) Closed-loop feedback control of methohexitone anesthesia by quantitative EEG-analysis in humans. Anesthesiology 67:53–59

    Article  Google Scholar 

  38. Schwilden H, Stoeckel H, Schüttler J (1989) Closed-loop feedback control of propofol anaesthesia by quantitative EEG analysis in humans. Br J Anaesth 62:290–296

    Article  PubMed  CAS  Google Scholar 

  39. Schwilden H (1989) Use of the median EEG frequency and! pharmacokinetics in determining depth of anaesthesia. In: Jones JG (ed) Bailliers clinical anaesthesiology. Bailllier, London, pp 603–622

    Google Scholar 

  40. Schwilden H, Stoeckel H (1990) Effective therapeutic infusions produced by closed- loop feedback control of methohexital administration during total intravenous anesthesia with fentanyl. Anesthesiology 74:225–229

    Article  Google Scholar 

  41. Schwilden H, Schüttler J (1990) Bestimmung effektiver therapeutischer Infusionsraten (ETI) für intravenöse Anaesthetika durch feedback-geregelte Dosierung. Anaesthesist 39:603–606

    PubMed  CAS  Google Scholar 

  42. Schwilden H, Stoeckel H (1993) Closed-loop feedback controlled administration of alfentanil during alfentanil-nitrous oxide anaesthesia. Br J Anaesth 70:389–393

    Article  PubMed  CAS  Google Scholar 

  43. Scott JC, Ponganis KV, Stanski DR (1985) EEG quantitation of narcotic effect. The comparative pharmacodynamics of fentanyl and alfentanil. Anesthesiology 62:234–241

    Article  PubMed  CAS  Google Scholar 

  44. Sheiner LB, Stanski DR, Vozeh S (1979) Simultaneous modeling of pharmacokinetics and pharmacodynamics: application to d-tubocurarine. Clin Pharmacol Ther 25:358

    PubMed  CAS  Google Scholar 

  45. Stoeckel H, Schwilden H, Lauven PM, Schüttler J (1981) EEG parameters for evaluation of depth of anaesthesia. The median of frequency distribution. In: Vickers MD, Crul J (eds) Proceedings of the European Academy of Anaesthesiology 1980. Springer. Berlin Heidelberg New York, pp 73–78

    Google Scholar 

  46. Stoeckel H, Schwilden H (1984) Quantitative EEG-analysis and monitoring depth of anaesthesia. In: Gomez QJ, Egay LM, de la Cruz-Odi MF (eds) Anesthesia-safety for all. Elsevier, Amsterdam, p 151

    Google Scholar 

  47. Stoeckel H, Schüttler J, Schwilden H (1985) Grundlagen der Infusionsnarkose mit Alfentanil. In: Zindler M, Härtung E (eds) Alfentanil. Ein neues, ultrakurzwirkendes Opioid. Urban and Schwarzenberg, Munich, pp 141–150

    Google Scholar 

  48. Stoeckel H, Schwilden H (1986) Methoden der automatischen Feedback-Regelung für die Narkose, Konzepte und klinische Anwendung. Anaesth Intensivther Notfallmed 21:60–67

    Article  CAS  Google Scholar 

  49. Ulrych TJ, Bishop TN (1975) Maximum entropy spectral analysis and autoregressive decomposition. Rev. Geophys Space Phys 13:183

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schwilden, H. (1994). Electroencephalographic Feedback Control of Anesthetic Drug Administration. In: Schulte am Esch, J., Kochs, E. (eds) Central Nervous System Monitoring in Anesthesia and Intensive Care. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78441-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78441-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78443-9

  • Online ISBN: 978-3-642-78441-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics