Skip to main content

Abstract

During the last decade, somatosensory evoked potentials (SSEP) have become established as a practical method for monitoring the spinal cord during various surgical procedures where there is a risk of paraplegia, e.g., scoliosis surgery, thoracic aortic surgery, and neurosurgical procedures upon the spinal cord. However, it has also become apparent that SSEP have limitations concerning their ability to monitor the entire spinal cord. SSEP travel exclusively in ascending sensory pathways (dorsal columns and posterolateral tracts). Accordingly, selective injury to the more anteriorly located motor tracts and motor neuronal systems in the central gray matter and anterior horn may go undetected. A number of case reports have described false negative results with SSEP monitoring, i.e., postoperative paraplegia despite unaltered intraoperative SSEP [4,27,38]. A recent survey by the Scoliosis Research Society among physicians performing intraoperative SSEP monitoring during spinal surgery revealed that five out of 27 major neurological complications (17%) that occurred with monitoring in place were not diagnosed by changes in SSEP [8]. Even if technical errors or lack of experience are taken into account that may have hampered the acquisition of reliable SSEP waveforms in some of these cases, this figure suggests that injury to the spinal cord is sometimes limited to the motor pathways. Given the differences in blood supply to the anterior and posterior spinal cord, there are several clinical situations where selective ischemia of the anterior part of the cord may ensue. This is particularly true for the thoracic spinal cord, where in some patients the anatomical variation of the anterior spinal artery may be such that interruption of a single intercostal or lumbar feeder vessel will result in spinal cord ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ackermann H, Scholz E, Koehler W, Dichgans J (1991) Influence of posture and voluntary background contraction upon compound muscle action potentials from anterior tibial and soleus muscle following transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol 81:71–80

    Article  PubMed  CAS  Google Scholar 

  2. Amassian VE, Cracco RQ, Maccabee PJ (1989) Focal stimulation of human cerebral cortex with the magnetic coil: a comparison with electrical stimulation. Electroencephalogr Clin Neurophysiol 74:401–416

    Article  PubMed  CAS  Google Scholar 

  3. Barker AT, Jalinous R, Freeston IL (1985) Noninvasive magnetic stimulation of human motor cortex. Lancet 11:1106–1107

    Article  Google Scholar 

  4. Ben-David B, Haller G, Taylor P (1987) Anterior spinal fusion complicated by paraplegia. A case report of a false-negative somatosensory-evoked potential. Spine 12:536–539

    Article  PubMed  CAS  Google Scholar 

  5. Benecke R, Meyer BU, Gohmann M, Conrad B (1988) Analysis of muscle responses elicited by transcranial stimulation of the corticospinal system in man. Electroencephalogr Clin Neurophysiol 69:412–422

    Article  PubMed  CAS  Google Scholar 

  6. Calancie B, Klose KJ, Baier S, Green BA (1991) Isoflurane-induced attenuation of motor evoked potentials caused by electrical motor cortex stimulation during surgery. J Neurosurg 74:897–904

    Article  PubMed  CAS  Google Scholar 

  7. Cowan JM, Day BL, Marsden C, Roth well JC (1986) The effect of percutaneous motor cortex stimulation on H reflexes in muscles of the arm and leg in intact man. J. Physiol (Lond) 377:333–347

    CAS  Google Scholar 

  8. Dawson EG, Sherman JE, Kanim LE, Nuwer MR (1991) Spinal cord monitoring: results of the Scoliosis Research Society and the European Spinal Deformity Society Survey. Spine 16:S361-S364

    Article  PubMed  CAS  Google Scholar 

  9. Day BL, Dick JPR, Marsden CD, Thompson PD (1986) Differences between electrical and magnetic stimulation of the human brain. J Physiol (Lond) 378:36P

    Google Scholar 

  10. Day BL, Dressier D, Maertens de Noordhout A, Marsden CD, Nakashima K, Rothwell JC, Thompson PD (1989) Electric and magnetic stimulation of human motor cortex: surface EMG and single motor unit responses. J Physiol (Lond) 412:449–473

    CAS  Google Scholar 

  11. Day BL, Maertens de Noordhout A, Marsden CD, Nakashima K, Rothwell JC, Thompson PD (1987) A comparison of the effects of anodal and cathodal stimulation of the human motor cortex through the intact scalp. J Physiol (Lond) 394:118P

    Google Scholar 

  12. Day BL, Rothwell JC, Thompson PD, Dick JP, Cowan JM, Berardelli A, Marsden CD (1987) Motor cortex stimulation in intact man. II. Multiple descending volleys. Brain 110:1191–1209

    Article  PubMed  Google Scholar 

  13. Deletis V, Dimitrijevic MR, Sherwood AM (1987) Effects of electrically induced afferent input from limb nerves on the excitability of human cortex. Neurosurgery 20:195–197

    Article  PubMed  CAS  Google Scholar 

  14. Edmonds HL Jr, Paloheimo MP, Backman MH, Johnson JR, Holt RT, Shields CB (1989) Transcranial magnetic motor evoked potentials (tcMMEP) for functional monitoring of motor pathways during scoliosis surgery. Spine 14:683–686

    Article  PubMed  Google Scholar 

  15. Ghaly RF, Stone JL, Levy WJ, Roccaforte P, Brunner EB (1990) The effect of etomidate on motor evoked potentials induced by transcranial magnetic stimulation in the monkey. Neurosurgery 27:936–942

    Article  PubMed  CAS  Google Scholar 

  16. Ghaly RF, Stone JL, Levy WL, Kartha R, Aldrete JA (1990) The effect of nitrous oxide on transcranial magnetic-induced electromyographic responses in the monkey. J Neurosurg Anesth 2:175–181

    Article  CAS  Google Scholar 

  17. Hicks RG, Burke DJ, Stephen JP (1991) Monitoring spinal cord function during scoliosis surgery with Cotrel-Dubousset instrumentation. Med J Aust 154:82–86

    PubMed  CAS  Google Scholar 

  18. Hicks RG, Woodforth IJ, Crawford MR, Stephen JPH, Burke DJ (1992) Some effects of isoflurane on I waves of the motor evoked potential. Br J Anaesth 69:130–136

    Article  PubMed  CAS  Google Scholar 

  19. Inghilleri M, Berardellli A, Cruccu G, Priori A, Manfredi M (1990) Motor potentials evoked by paired cortical stimuli. Electroencephalogr Clin Neurophysiol 77:382–389

    Article  PubMed  CAS  Google Scholar 

  20. Jellinek D, Jewkes D, Symon L (1991) Noninvasive intraoperative monitoring of motor evoked potentials under propofol anesthesia: effects of spinal surgery on the amplitude and latency of motor evoked potentials. Neurosurgery 29:551–557

    Article  PubMed  CAS  Google Scholar 

  21. Jellinek D, Piatt M, Jewkes D, Symon L (1991) Effects of nitrous oxide on motor evoked potentials recorded from skeletal muscle in patients under total anesthesia with intravenously administered propofol. Neurosurgery 29:558–562

    Article  PubMed  CAS  Google Scholar 

  22. Kalkman C, Drummond J, Ribberink A (1991) Low concentrations of isoflurane abolish motor evoked responses to transcranial electrical stimulation during nitrous oxideopioid anesthesia in humans. Anesth Analg 73:410–415

    Article  PubMed  CAS  Google Scholar 

  23. Kalkman CJ, Drummond JC, Kennelly NA, Patel PM, Partridge BL (1992) Intraoperative monitoring of tibialis anterior muscle motor evoked responses to transcranial electrical stimulation during partial neuromuscular blockade. Anesth Analg 75:584–589

    Article  PubMed  CAS  Google Scholar 

  24. Kalkman CJ, Drummond JC, Patel PM, Sano T, Chesnut RM (1992) Effects of droperidol, pentobarbital and ketamine on myogenic transcranial motor evoked responses in humans. Anesthesiology 77: A163 (abstr)

    Article  Google Scholar 

  25. Kalkman CJ, Drummond JC, Ribberink AA, Patel PM, Sano T, Bickford RG (1992) Effects of propofol, etomidate, midazolam and fentanyl on motor evoked responses to transcranial electrical or magnetic stimulation in humans. Anesthesiology 76:502–509

    Article  PubMed  CAS  Google Scholar 

  26. Kasai T, Hayes KC, Wolfe DL, Allatt RD (1992) Afferent conditioning of motor evoked potentials following transcranial magnetic stimulation of motor cortex in normal subjects. Electroencephalogr Clin Neurophysiol 85:95–101

    Article  PubMed  CAS  Google Scholar 

  27. Lesser RP, Raudzens P, Liiders H, Nuwer MR, Goldie WD, Morris HH, Dinner DS, Klem G, Hahn JF, Shetter AG, Ginsburg HH, Gurd AR (1986) Post-operative neurological deficits may occur despite unchanged intraoperative somatosensory evoked potentials. Ann Neurol 19:22–25

    Article  PubMed  CAS  Google Scholar 

  28. Levy WJ (1983) Spinal evoked potentials from the motor tracts. J Neurosurgery 58:38–44

    Article  CAS  Google Scholar 

  29. Levy WJ, York DH (1983) Evoked potentials from the motor tracts in humans. Neurosurgery 4:422–429

    Article  Google Scholar 

  30. Levy WJ, York DH, McCaffrey M, Tanzer F (1984) Motor evoked potential from transcranial stimulation of the motor cortex in humans. Neurosurgery 15:287–302

    Article  PubMed  CAS  Google Scholar 

  31. Losasso T, Boudreaux J, Muzzi D, Cucchiara R, Daube J (1991) The effect of. anesthetic agents on magnetic motor evoked potentials (TMEP) in neurosurgical patients. Anesthesiology 75:A1032 (abstr)

    Article  Google Scholar 

  32. Machida M, Weinstein SL, Imamura Y, Usui T, Yamada T, Kimura J, Toriyama S (1989) Compound muscle action potentials and spinal evoked potentials in experimental spine maneuver. Spine 14:687–691

    Article  PubMed  CAS  Google Scholar 

  33. Machida M, Weinstein SL, Yamada T, Kimura J (1985) Spinal cord monitoring: electrophysiological measures of sensory and motor function during spinal surgery. Spine 10:407–413

    Article  PubMed  CAS  Google Scholar 

  34. Machida M, Weinstein SL, Yamada T, Kimura J, Itagaki T, Usui T (1988) Monitoring of motor action potentials after stimulation of the spinal cord. J Bone Joint Surg [Am] 70:911–918

    CAS  Google Scholar 

  35. Machida M, Weinstein SL, Yamada T, Kimura J, Toriyama S (1988) Dissociation of muscle action potentials and spinal somatosensory evoked potentials after ischemic damage of spinal cord. Spine 13:1119–1124

    Article  PubMed  CAS  Google Scholar 

  36. Merton PA, Morton HB (1980) Stimulation of the cerebral cortex in the intact human subject. Nature 285:227

    Article  PubMed  CAS  Google Scholar 

  37. Mills KR, Murray NM, Hess CW (1987) Magnetic and electrical transcranial brain stimulation: physiological mechanisms and clinical applications. Neurosurgery 20:164–168

    Article  PubMed  CAS  Google Scholar 

  38. Mustain W, Kendig R (1991) Dissociation of neurogenic motor and somatosensory evoked potentials. A case report. Spine 16:851–853

    Google Scholar 

  39. Owen JH, Bridwell KH, Grubb R, Jenny A, Allen B, Padberg AM, Shimon SM (1991) The clinical application of neurogenic motor evoked potentials to monitor spinal cord function during surgery. Spine 16:S385-S390

    Article  Google Scholar 

  40. Owen JH, Jenny AB, Naito M, Weber K, Bridwell KH, McGhee R (1989) Effects of spinal cord lesioning on somatosensory and neurogenic-motor evoked potentials. Spine 14:673–682

    Article  PubMed  CAS  Google Scholar 

  41. Peterson DO, Drummond JC, Todd MM (1986) Effects of halothane, enflurane, isoflurane and nitrous oxide on somatosensory evoked potentials in humans. Anesthesiology 65:35–40

    Article  PubMed  CAS  Google Scholar 

  42. Peterson R, Mongan P (1991) Effect of intravenous anesthetics on neurogenic motor evoked potentials recorded at the spinal and sciatic level. Anesthesiology 75:A179

    Article  Google Scholar 

  43. Rossini P (1990) Methodological and physiological aspects of motor evoked potentials (Supplement 41 to Electroencephalogr Clin Neurophysiol). New trends and advanced techniques in clinical neurophysiology. Elsevier Science, Amsterdam

    Google Scholar 

  44. Rossini PM, Caramia MD, Zarola F (1987) Mechanisms of nervous propagation along central motor pathways: noninvasive evaluation in healthy subjects and in patients with neurological disease. Neurosurgery 20:183–191

    Article  PubMed  CAS  Google Scholar 

  45. Rothwell JC, Thompson PD, Day BL, Dick JP, Kachi T, Cowan JM, Marsden CD (1987) Motor cortex stimulation in intact man. 1. General characteristics of EMG responses in different muscles. Brain 110:1173–1190

    Article  PubMed  Google Scholar 

  46. Schmid UD, Boll J, Liechti S, Schmid J, Hess CW (1992) Influence of some anesthetic agents on muscle responses to transcranial magnetic cortex stimulation-a pilot study in humans. Neurosurgery 30:85–92

    Article  PubMed  CAS  Google Scholar 

  47. Schonle PW, Isenberg C, Crozier TA, Dressier D, Machetanz J, Conrad B (1989) Changes of transcranial evoked motor responses in man by midazolam, a short acting benzodiazepine. Neurosci Lett 101:321–324

    Article  PubMed  CAS  Google Scholar 

  48. Su C, Haghighi S, Oro J, Gaines R (1992) “Backfiring” in spinal cord monitoring: high thoracic spinal cord stimulation evokes sciatic response by antidromic sensory pathway conduction, not motor tract conduction. Spine 17:504–508

    Article  PubMed  CAS  Google Scholar 

  49. Zentner J (1989) Noninvasive motor evoked potential monitoring during neurosurgical operations on the spinal cord. Neurosurgery 24:709–712

    Article  PubMed  CAS  Google Scholar 

  50. Zentner J, Ebner A (1989) Nitrous oxide suppresses the electromyographic response evoked by electrical stimulation of the motor cortex. Neurosurgery 24:60–62

    Article  PubMed  CAS  Google Scholar 

  51. Zentner J, Schumacher M, Bien S (1988) Motor evoked potentials during interventional neuroradiology. Neuroradiology 30:252–255

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kalkman, C.J. (1994). Motor-Evoked Potentials. In: Schulte am Esch, J., Kochs, E. (eds) Central Nervous System Monitoring in Anesthesia and Intensive Care. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78441-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78441-5_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78443-9

  • Online ISBN: 978-3-642-78441-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics