Skip to main content

The Use of Targeted Mutations in ES Cells to Create Novel Immunodeficient Mouse Models

  • Conference paper
Symposium in Immunology III
  • 41 Accesses

Abstract

The generation of the immune system is the only known developmental process in mammals that utilizes site-specific genomic recombination mechanisms. B lymphocyte differentiation occurs in fetal liver and adult bone marrow through a well-characterized pathway which includes the ordered assembly of immunoglobulin (Ig) heavy and light chain variable region genes followed by the expression of the assembled Ig chains (Alt et al. 1987, 1992). Likewise, T lymphocyte differentiation follows a similarly ordered program in the thymus, in which developing T cells rearrange and express T cell receptor (TCR)-β and -α chain genes (Davis and Bjorkman 1988; Malissen et al. 1992). Both Ig and TCR variable region genes are assembled by a common enzymatic process referred to as VDJ recombination (Tonegawa 1983; Blackwell and Alt 1989); the VDJ recombinase appears to be expressed only in developing B and T lymphocytes (Alt et al. 1992). The terminal differentiation of mature B cells may involve a different type of site-specific recombinational event referred to as heavy chain class-switch recombination (Blackwell and Alt 1989); this process allows the initially expressed μ constant region gene to be replaced by a different downstream CH gene, while maintaining the same variable region specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alt FW, Baltimore D (1982) Joining of immunoglobulin heavy chain gene segments: implications from a chromosome with evidence of three D-JH functions. Proc Natl Acad Sci USA 79: 4112–4122

    Article  Google Scholar 

  2. Alt FW, Enea V, Bothwell ALM, Baltimore D (1980) Activity of multiple light chain genes in murine myeloma cells producing a single, functional light chain. Cell 21: 1–12

    Article  PubMed  CAS  Google Scholar 

  3. Alt FW, Yancopoulos GD, Blackwell TK, Wood C, Thomas E, Boss M, Coffman R, Rosenberg N, Tonegawa S, Baltimore D (1984) Ordered rearrangement of immunoglobulin heavy chain variable region segments. EMBO J 3: 1209–1219

    PubMed  CAS  Google Scholar 

  4. Alt FW, Blackwell TK, Yancopoulos GD (1987) Development of primary antibody repertoire. Science 238: 1079–1087

    Article  PubMed  CAS  Google Scholar 

  5. Alt FW, Oltz EM, Young F, Gorman J, Taccioli G, Chen J (1992) VDJ recombination. Immunol Today 13: 306–314

    Article  PubMed  CAS  Google Scholar 

  6. Bernards B, Schackleford GM, Gerber MR, Horowitz JM, Friend SH, Schartl M, Bogenmann E, Rapaport JM, McGee T, Dryja TP, Weinberg RA (1989) Structure and expression of the murine retinoblastoma gene and characterization of its encoded protein. Proc Natl Acad Sci USA 86: 6474–6478

    Article  PubMed  CAS  Google Scholar 

  7. Blackwell TK, Alt FW (1989) Mechanism and developmental program of immunoglobulin gene rearrangement in mammals. Annu Rev Genet 23: 605–636

    Article  PubMed  CAS  Google Scholar 

  8. Blackwell TK, Malynn BA, Pollock RR, Ferrier P, Covey L, Fulop GM, Phillips RA, Yancopoulos GD, Alt FW (1989) Isolation of scid pre-B cells that rearrange kappa light chain genes: formation of normal signal and abnormal coding joins. EMBO J 8: 735–742

    PubMed  CAS  Google Scholar 

  9. Bosma GC, Custer RP, Bosma MJ (1983) A severe combined immunodeficiency mutation in the mouse. Nature 301: 527–530

    Article  PubMed  CAS  Google Scholar 

  10. Charron J, Malynn BA, Fisher P, Stewart V, Jeannotte L, Goff SP, Robertson EJ, Alt FW (1992) Embryonic lethality in mice homozygous for a targeted disruption of the N-myc gene. Genes Dev 6: 2248–2257

    Article  PubMed  CAS  Google Scholar 

  11. Chen J, Alt FW (1993) Gene rearrangement and B–cell development. Curr Opin Immunol 5: 194–200

    Article  PubMed  CAS  Google Scholar 

  12. Chen J, Trounstine M, Alt FW, Young F, Kurahara C, Loring JF, Huszar D (1993a) Immunoglobulin gene rearrangement in B cell deficient mice generated by targeted deletion of the JH locus. Int Immunol 5: 647–656

    Article  PubMed  CAS  Google Scholar 

  13. Chen J, Trounstine M, Kurahara C, Young F, Kuo C-C, Xu Y, Loring JF, Alt FW, Huszar D (1993b) B cell development in mice that lack one or both immunoglobulin k light chain genes. EMBO J 12: 821–830

    PubMed  CAS  Google Scholar 

  14. Chen J, Lansford R, Stewart V, Young F, Alt FW (1993c) RAG-2-deficient blastocyst complementation: an assay of gene function in lymphocyte development. Proc Natl Acad Sci USA 90: 4528–4532

    Article  PubMed  CAS  Google Scholar 

  15. Clark AR, Maandag ER, van Roon M, van der Lug NMT, van der Valk M, Hooper ML, Berns A, te Riele H (1992) Requirement for a functional Rb-1 gene in murine development. Nature 359: 328–330

    Article  Google Scholar 

  16. Coffman RL, Weissman IL (1983) Immunoglobulin gene rearrangement during pre-B cell differentiation. J Mol Cell Immunol 1: 31–38

    PubMed  CAS  Google Scholar 

  17. Coleclough C, Perry RP, Karjalainen K, Weigert M (1981) Aberrant rearrangements contribute significantly to the allelic exclusion of immunoglobulin gene expression. Nature 290: 372–387

    Article  PubMed  CAS  Google Scholar 

  18. Davis MM, Bjorkman PJ (1988) T-cell antigen receptor genes and T-cell recognition. Nature 334: 395–401

    Article  PubMed  CAS  Google Scholar 

  19. DiSanto JP, Bonnefoy JY, Gauchat JF, Fischer A, de Sain Basile G (1993) CD40 ligan mutations in X-linked immunodeficiency with hyper-IgM. Nature 361: 541–543

    CAS  Google Scholar 

  20. Ehlich A, Schaal S, Gu H, Kitamura D, Muller W, Rajewsky K (1993) Immunoglobulin heavy and light chain genes rearrange independently at early stages of B cell development. Cell 72: 695–704

    Article  PubMed  CAS  Google Scholar 

  21. Ferrier P, Covey LR, Li SC, Suh H, Malynn BA, Blackwell TK, Morrow MA, Alt FW (1990) Normal recombination substrate VH to DJH rearrangement in pre-B cell lines from seid mice. J Exp Med 171: 1909–1918

    Article  PubMed  CAS  Google Scholar 

  22. Fulop GM, Phillips RA (1990) The seid mutation in mice causes a general defect in DNA repair. Nature 347: 479–482

    Article  PubMed  CAS  Google Scholar 

  23. Fung-Leung W-P, Mak T (1992) Embryonic stem cells and homologous recombination. Curr Opin Immunol 4: 189–194

    Article  PubMed  CAS  Google Scholar 

  24. Hamel PA, Gallie BL, Phillips RA (1992) The retinoblastoma protein and cell cycle regulation. Trends Genet 8: 180–185

    PubMed  CAS  Google Scholar 

  25. Hardy RR, Carmack CE, Shinton SA, Kemp JD, Hayakawa K (1991) Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow. J Exp Med 173: 1213–1225

    Article  PubMed  CAS  Google Scholar 

  26. Hieter PH, Korsmeyer SJ, Waldmann TA, Leder P (1981) Human immunoglobulin x light-chain genes are deleted or rearranged in X-producing B cells. Nature 290: 368–372

    Article  PubMed  CAS  Google Scholar 

  27. Hollingsworth RE Jr, Hensey CE, Lee WH (1993) Retinoblastoma protein arid the cell cycle. Curr Biol 3: 55–62

    CAS  Google Scholar 

  28. Iglesias A, Kopf M, Williams GS, Buhler B, Kohler G (1991) Molecular requirements for the m-induced light chain gene rearrangement in pre-B cells. EMBO J 10: 2147–2156

    PubMed  CAS  Google Scholar 

  29. Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA (1992) Effects of an Rb mutation in the mouse. Nature 359: 295–300

    Article  PubMed  CAS  Google Scholar 

  30. Korthauer U, Graf D, Mages HW, Briere F, Padayachee M, Malcolm S, Ugazio AG, Notarangelo LD, Levinsky RJ, Kroczek RA (1993) Defective expression of T-cell CD40 ligand causes X–linked immunodeficiency with hyper-IgM. Nature 361: 539–541

    Article  PubMed  CAS  Google Scholar 

  31. Lee Ey-HP, Chang C-Y, Hu N, Wang Y-C, Lai C-C, Herrup K, Lee W-H, Bradley A (1992) Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359: 288–294

    Article  PubMed  CAS  Google Scholar 

  32. Lieber MR, Hesse JE, Lewis S, Bosma GC, Rosenberg N, Mizuuchi K, Bosma MJ, Geliert M (1988) The defect in murine severe combined immune deficiency: joining of signal sequences but not coding segments in V(D)J recombination. Cell 55: 7–16

    Article  PubMed  CAS  Google Scholar 

  33. Lutzker S, Rothman P, Pollock R, Coffman R, Alt FW (1988) Mitogen-and IL-4-regulated expression of germ-line Ig y2b transcripts: evidence for directed heavy chain class switching. Cell 53: 177–184

    Article  PubMed  CAS  Google Scholar 

  34. Malissen M, Trucy J, Jouvin-Marche E, Cazenave P-A, Scollay R, Malissen B (1992) Regulation of TCR a and ß gene allelic exclusion during T-cell development. Immunol Today 13: 315–322

    Article  PubMed  CAS  Google Scholar 

  35. Malynn BA, Blackwell, TK, Fulop G, Rathbun GA, Furley AJW, Ferrier P, Heinke LB, Phillips RA, Yancopoulos GD, Alt FW (1988) The seid defect affects the final step of the immunoglobulin V(D)J recombination mechanism. Cell 54: 453–460

    Article  PubMed  CAS  Google Scholar 

  36. Mclntire KR, Rouse AM (1970) Mouse Ig light chains alteration of x/X ratio. Fed Proc 29: 704–708

    Google Scholar 

  37. Mombaerts P, Iacomini P, Johnson J, Herrup K, Tonegawa S, Papaloannou VE (1992)

    Google Scholar 

  38. RAG-l-deficient mice have no mature B and T lymphocytes. Cell 68: 869–877

    Google Scholar 

  39. Nisonoff A, Hopper JE, Spring SB (1975) The antibody molecules. Academic, New York

    Google Scholar 

  40. Nussenzweig M, Shaw AC, Sinn E, Danner DB, Holmes KL, Morse HC, Leder P (1987) Allelic exclusion in transgenic mice that express the membrane form of immunoglobulin \i. Science 236: 816–819

    Article  PubMed  CAS  Google Scholar 

  41. Oettinger MA, Schatz DG, Gorka C, Baltimore D (1990) RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 248: 1517–1523

    Article  PubMed  CAS  Google Scholar 

  42. Reichman-Fried M, Hardy RR, Bosma MJ (1990) Development of B–lineage cells in scid mice following the introduction of functionally rearranged immunoglobulin transgenes. Proc Natl Acad Sci USA 87: 2730–2734

    Article  PubMed  CAS  Google Scholar 

  43. Reth MG, Ammiirati P, Jackson S, Alt FW (1985) Regulated progression of a cultured pre-B-cell line to the B-cell stage. Nature 317: 353–355

    Article  PubMed  CAS  Google Scholar 

  44. Rothman P, Li SC, Alt FW (1989) The molecular events in heavy chain class-switching. Semin Immunol 1: 65–77

    PubMed  CAS  Google Scholar 

  45. Schatz DG, Oettinger MA, Baltimore D (1990) The V(D) J recombination activating gene, RAG-1. Cell 59: 1035–1048

    Google Scholar 

  46. Schorle H, HoltschkeT, HunigT, Schimpl A, Horak I (1991) Development and function of T cells in mice rendered interleukin-2 deficient by gene targeting. Nature 352: 621–624

    CAS  Google Scholar 

  47. Shinkai Y, Rathbun G, Lam K-P, Oltz EM, Stewart V, Mendelsohn M, Charron J, Datta M, Young F, Stall AM, Alt FW (1992) RAG-2 deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68: 855–867

    Article  PubMed  CAS  Google Scholar 

  48. Shinkai Y, Koyasu S, Nakayama K, Murphy KM, Loh DY, Reinherz EL, Alt FW (1993) Restoration of T cell development in RAG-2-deficient mice by functional TCR transgenes. Science 259: 822–825

    Article  PubMed  CAS  Google Scholar 

  49. Taccioli G, Rathbun G, Oltz G, Stamato T, Jeggo PA, Alt FW (1993) Impairment of V(D)J recombination in double-stranded repair mutants. Science 260: 207–210

    Article  PubMed  CAS  Google Scholar 

  50. Tonegawa S (1983) Somatic generation of antibody diversity. Nature 302: 575–581

    Article  PubMed  CAS  Google Scholar 

  51. Tsukada S, Saffran DC, Rawlings DJ, Parolini O, Allen RC, Klisak I, Sparkes RS, Kubagawa H, MohandasT, Quan S, Belmont JW, Cooper MD, Conley ME, Witte ON (1993) Deficient expression of a B cell cytoplasmic tyrosine kinase in human x-linked agammaglobulinemia. Cell 72: 276–290

    Google Scholar 

  52. Vetrie D, Vorechovsky I, Sideras P, Holland J, Davies A, Flinter F, Hammarstrom L, Kinnon C, Levinsky R, Bobrow M, Smith CIE, Bentley DR (1993) The gene involved in x-linked agammaglobulinemia ( XLA) is a member of the src family of protein-tyrosine kinases. Nature 361: 226–233

    Google Scholar 

  53. Zou Y–R, Takeda S, Rajewsky K (1993) Gene targeting in the Igx locus: efficient generation of X expressing B cells independent of gene rearrangements in Igx. EMBO J 12: 811–820

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alt, F.W., Chen, J. (1994). The Use of Targeted Mutations in ES Cells to Create Novel Immunodeficient Mouse Models. In: Eibl, M.M., Huber, C., Peter, H.H., Wahn, U. (eds) Symposium in Immunology III. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78438-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78438-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57126-1

  • Online ISBN: 978-3-642-78438-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics