The Use of Targeted Mutations in ES Cells to Create Novel Immunodeficient Mouse Models

  • F. W. Alt
  • J. Chen
Conference paper


The generation of the immune system is the only known developmental process in mammals that utilizes site-specific genomic recombination mechanisms. B lymphocyte differentiation occurs in fetal liver and adult bone marrow through a well-characterized pathway which includes the ordered assembly of immunoglobulin (Ig) heavy and light chain variable region genes followed by the expression of the assembled Ig chains (Alt et al. 1987, 1992). Likewise, T lymphocyte differentiation follows a similarly ordered program in the thymus, in which developing T cells rearrange and express T cell receptor (TCR)-β and -α chain genes (Davis and Bjorkman 1988; Malissen et al. 1992). Both Ig and TCR variable region genes are assembled by a common enzymatic process referred to as VDJ recombination (Tonegawa 1983; Blackwell and Alt 1989); the VDJ recombinase appears to be expressed only in developing B and T lymphocytes (Alt et al. 1992). The terminal differentiation of mature B cells may involve a different type of site-specific recombinational event referred to as heavy chain class-switch recombination (Blackwell and Alt 1989); this process allows the initially expressed μ constant region gene to be replaced by a different downstream CH gene, while maintaining the same variable region specificity.


Scid Mouse Light Chain Gene Variable Region Gene Scid Mutation Blastocyst Complementation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alt FW, Baltimore D (1982) Joining of immunoglobulin heavy chain gene segments: implications from a chromosome with evidence of three D-JH functions. Proc Natl Acad Sci USA 79: 4112–4122CrossRefGoogle Scholar
  2. Alt FW, Enea V, Bothwell ALM, Baltimore D (1980) Activity of multiple light chain genes in murine myeloma cells producing a single, functional light chain. Cell 21: 1–12PubMedCrossRefGoogle Scholar
  3. Alt FW, Yancopoulos GD, Blackwell TK, Wood C, Thomas E, Boss M, Coffman R, Rosenberg N, Tonegawa S, Baltimore D (1984) Ordered rearrangement of immunoglobulin heavy chain variable region segments. EMBO J 3: 1209–1219PubMedGoogle Scholar
  4. Alt FW, Blackwell TK, Yancopoulos GD (1987) Development of primary antibody repertoire. Science 238: 1079–1087PubMedCrossRefGoogle Scholar
  5. Alt FW, Oltz EM, Young F, Gorman J, Taccioli G, Chen J (1992) VDJ recombination. Immunol Today 13: 306–314PubMedCrossRefGoogle Scholar
  6. Bernards B, Schackleford GM, Gerber MR, Horowitz JM, Friend SH, Schartl M, Bogenmann E, Rapaport JM, McGee T, Dryja TP, Weinberg RA (1989) Structure and expression of the murine retinoblastoma gene and characterization of its encoded protein. Proc Natl Acad Sci USA 86: 6474–6478PubMedCrossRefGoogle Scholar
  7. Blackwell TK, Alt FW (1989) Mechanism and developmental program of immunoglobulin gene rearrangement in mammals. Annu Rev Genet 23: 605–636PubMedCrossRefGoogle Scholar
  8. Blackwell TK, Malynn BA, Pollock RR, Ferrier P, Covey L, Fulop GM, Phillips RA, Yancopoulos GD, Alt FW (1989) Isolation of scid pre-B cells that rearrange kappa light chain genes: formation of normal signal and abnormal coding joins. EMBO J 8: 735–742PubMedGoogle Scholar
  9. Bosma GC, Custer RP, Bosma MJ (1983) A severe combined immunodeficiency mutation in the mouse. Nature 301: 527–530PubMedCrossRefGoogle Scholar
  10. Charron J, Malynn BA, Fisher P, Stewart V, Jeannotte L, Goff SP, Robertson EJ, Alt FW (1992) Embryonic lethality in mice homozygous for a targeted disruption of the N-myc gene. Genes Dev 6: 2248–2257PubMedCrossRefGoogle Scholar
  11. Chen J, Alt FW (1993) Gene rearrangement and B–cell development. Curr Opin Immunol 5: 194–200PubMedCrossRefGoogle Scholar
  12. Chen J, Trounstine M, Alt FW, Young F, Kurahara C, Loring JF, Huszar D (1993a) Immunoglobulin gene rearrangement in B cell deficient mice generated by targeted deletion of the JH locus. Int Immunol 5: 647–656PubMedCrossRefGoogle Scholar
  13. Chen J, Trounstine M, Kurahara C, Young F, Kuo C-C, Xu Y, Loring JF, Alt FW, Huszar D (1993b) B cell development in mice that lack one or both immunoglobulin k light chain genes. EMBO J 12: 821–830PubMedGoogle Scholar
  14. Chen J, Lansford R, Stewart V, Young F, Alt FW (1993c) RAG-2-deficient blastocyst complementation: an assay of gene function in lymphocyte development. Proc Natl Acad Sci USA 90: 4528–4532PubMedCrossRefGoogle Scholar
  15. Clark AR, Maandag ER, van Roon M, van der Lug NMT, van der Valk M, Hooper ML, Berns A, te Riele H (1992) Requirement for a functional Rb-1 gene in murine development. Nature 359: 328–330CrossRefGoogle Scholar
  16. Coffman RL, Weissman IL (1983) Immunoglobulin gene rearrangement during pre-B cell differentiation. J Mol Cell Immunol 1: 31–38PubMedGoogle Scholar
  17. Coleclough C, Perry RP, Karjalainen K, Weigert M (1981) Aberrant rearrangements contribute significantly to the allelic exclusion of immunoglobulin gene expression. Nature 290: 372–387PubMedCrossRefGoogle Scholar
  18. Davis MM, Bjorkman PJ (1988) T-cell antigen receptor genes and T-cell recognition. Nature 334: 395–401PubMedCrossRefGoogle Scholar
  19. DiSanto JP, Bonnefoy JY, Gauchat JF, Fischer A, de Sain Basile G (1993) CD40 ligan mutations in X-linked immunodeficiency with hyper-IgM. Nature 361: 541–543Google Scholar
  20. Ehlich A, Schaal S, Gu H, Kitamura D, Muller W, Rajewsky K (1993) Immunoglobulin heavy and light chain genes rearrange independently at early stages of B cell development. Cell 72: 695–704PubMedCrossRefGoogle Scholar
  21. Ferrier P, Covey LR, Li SC, Suh H, Malynn BA, Blackwell TK, Morrow MA, Alt FW (1990) Normal recombination substrate VH to DJH rearrangement in pre-B cell lines from seid mice. J Exp Med 171: 1909–1918PubMedCrossRefGoogle Scholar
  22. Fulop GM, Phillips RA (1990) The seid mutation in mice causes a general defect in DNA repair. Nature 347: 479–482PubMedCrossRefGoogle Scholar
  23. Fung-Leung W-P, Mak T (1992) Embryonic stem cells and homologous recombination. Curr Opin Immunol 4: 189–194PubMedCrossRefGoogle Scholar
  24. Hamel PA, Gallie BL, Phillips RA (1992) The retinoblastoma protein and cell cycle regulation. Trends Genet 8: 180–185PubMedGoogle Scholar
  25. Hardy RR, Carmack CE, Shinton SA, Kemp JD, Hayakawa K (1991) Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow. J Exp Med 173: 1213–1225PubMedCrossRefGoogle Scholar
  26. Hieter PH, Korsmeyer SJ, Waldmann TA, Leder P (1981) Human immunoglobulin x light-chain genes are deleted or rearranged in X-producing B cells. Nature 290: 368–372PubMedCrossRefGoogle Scholar
  27. Hollingsworth RE Jr, Hensey CE, Lee WH (1993) Retinoblastoma protein arid the cell cycle. Curr Biol 3: 55–62Google Scholar
  28. Iglesias A, Kopf M, Williams GS, Buhler B, Kohler G (1991) Molecular requirements for the m-induced light chain gene rearrangement in pre-B cells. EMBO J 10: 2147–2156PubMedGoogle Scholar
  29. Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA (1992) Effects of an Rb mutation in the mouse. Nature 359: 295–300PubMedCrossRefGoogle Scholar
  30. Korthauer U, Graf D, Mages HW, Briere F, Padayachee M, Malcolm S, Ugazio AG, Notarangelo LD, Levinsky RJ, Kroczek RA (1993) Defective expression of T-cell CD40 ligand causes X–linked immunodeficiency with hyper-IgM. Nature 361: 539–541PubMedCrossRefGoogle Scholar
  31. Lee Ey-HP, Chang C-Y, Hu N, Wang Y-C, Lai C-C, Herrup K, Lee W-H, Bradley A (1992) Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359: 288–294PubMedCrossRefGoogle Scholar
  32. Lieber MR, Hesse JE, Lewis S, Bosma GC, Rosenberg N, Mizuuchi K, Bosma MJ, Geliert M (1988) The defect in murine severe combined immune deficiency: joining of signal sequences but not coding segments in V(D)J recombination. Cell 55: 7–16PubMedCrossRefGoogle Scholar
  33. Lutzker S, Rothman P, Pollock R, Coffman R, Alt FW (1988) Mitogen-and IL-4-regulated expression of germ-line Ig y2b transcripts: evidence for directed heavy chain class switching. Cell 53: 177–184PubMedCrossRefGoogle Scholar
  34. Malissen M, Trucy J, Jouvin-Marche E, Cazenave P-A, Scollay R, Malissen B (1992) Regulation of TCR a and ß gene allelic exclusion during T-cell development. Immunol Today 13: 315–322PubMedCrossRefGoogle Scholar
  35. Malynn BA, Blackwell, TK, Fulop G, Rathbun GA, Furley AJW, Ferrier P, Heinke LB, Phillips RA, Yancopoulos GD, Alt FW (1988) The seid defect affects the final step of the immunoglobulin V(D)J recombination mechanism. Cell 54: 453–460PubMedCrossRefGoogle Scholar
  36. Mclntire KR, Rouse AM (1970) Mouse Ig light chains alteration of x/X ratio. Fed Proc 29: 704–708Google Scholar
  37. Mombaerts P, Iacomini P, Johnson J, Herrup K, Tonegawa S, Papaloannou VE (1992)Google Scholar
  38. 58.
    RAG-l-deficient mice have no mature B and T lymphocytes. Cell 68: 869–877Google Scholar
  39. Nisonoff A, Hopper JE, Spring SB (1975) The antibody molecules. Academic, New YorkGoogle Scholar
  40. Nussenzweig M, Shaw AC, Sinn E, Danner DB, Holmes KL, Morse HC, Leder P (1987) Allelic exclusion in transgenic mice that express the membrane form of immunoglobulin \i. Science 236: 816–819PubMedCrossRefGoogle Scholar
  41. Oettinger MA, Schatz DG, Gorka C, Baltimore D (1990) RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 248: 1517–1523PubMedCrossRefGoogle Scholar
  42. Reichman-Fried M, Hardy RR, Bosma MJ (1990) Development of B–lineage cells in scid mice following the introduction of functionally rearranged immunoglobulin transgenes. Proc Natl Acad Sci USA 87: 2730–2734PubMedCrossRefGoogle Scholar
  43. Reth MG, Ammiirati P, Jackson S, Alt FW (1985) Regulated progression of a cultured pre-B-cell line to the B-cell stage. Nature 317: 353–355PubMedCrossRefGoogle Scholar
  44. Rothman P, Li SC, Alt FW (1989) The molecular events in heavy chain class-switching. Semin Immunol 1: 65–77PubMedGoogle Scholar
  45. Schatz DG, Oettinger MA, Baltimore D (1990) The V(D) J recombination activating gene, RAG-1. Cell 59: 1035–1048Google Scholar
  46. Schorle H, HoltschkeT, HunigT, Schimpl A, Horak I (1991) Development and function of T cells in mice rendered interleukin-2 deficient by gene targeting. Nature 352: 621–624Google Scholar
  47. Shinkai Y, Rathbun G, Lam K-P, Oltz EM, Stewart V, Mendelsohn M, Charron J, Datta M, Young F, Stall AM, Alt FW (1992) RAG-2 deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68: 855–867PubMedCrossRefGoogle Scholar
  48. Shinkai Y, Koyasu S, Nakayama K, Murphy KM, Loh DY, Reinherz EL, Alt FW (1993) Restoration of T cell development in RAG-2-deficient mice by functional TCR transgenes. Science 259: 822–825PubMedCrossRefGoogle Scholar
  49. Taccioli G, Rathbun G, Oltz G, Stamato T, Jeggo PA, Alt FW (1993) Impairment of V(D)J recombination in double-stranded repair mutants. Science 260: 207–210PubMedCrossRefGoogle Scholar
  50. Tonegawa S (1983) Somatic generation of antibody diversity. Nature 302: 575–581PubMedCrossRefGoogle Scholar
  51. Tsukada S, Saffran DC, Rawlings DJ, Parolini O, Allen RC, Klisak I, Sparkes RS, Kubagawa H, MohandasT, Quan S, Belmont JW, Cooper MD, Conley ME, Witte ON (1993) Deficient expression of a B cell cytoplasmic tyrosine kinase in human x-linked agammaglobulinemia. Cell 72: 276–290Google Scholar
  52. Vetrie D, Vorechovsky I, Sideras P, Holland J, Davies A, Flinter F, Hammarstrom L, Kinnon C, Levinsky R, Bobrow M, Smith CIE, Bentley DR (1993) The gene involved in x-linked agammaglobulinemia ( XLA) is a member of the src family of protein-tyrosine kinases. Nature 361: 226–233Google Scholar
  53. Zou Y–R, Takeda S, Rajewsky K (1993) Gene targeting in the Igx locus: efficient generation of X expressing B cells independent of gene rearrangements in Igx. EMBO J 12: 811–820PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • F. W. Alt
  • J. Chen

There are no affiliations available

Personalised recommendations