Advertisement

Alcohol-Induced Changes in Neuronal Membranes

  • J. Moring
  • W. J. Shoemaker
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 114)

Abstract

A large number of effects of acute and chronic ethanol exposure on the lipid and protein components of cell membranes have been documented. These effects vary in magnitude and importance. Whether the primary site of action of ethanol is lipid or protein in nature is still unknown. The purpose of this chapter is twofold: first, to review and evaluate the evidence concerning the site of ethanol action; and second, to review the membrane effects of ethanol and to assess their relative importance in producing the characteristic physiological and behavioral effects of ethanol consumption.

Keywords

Adenylyl Cyclase Ethanol Exposure Chronic Ethanol Adenylyl Cyclase Activity Fatty Acid Ethyl Ester 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham MH, Lieb WR, Franks NP (1991) Role of hydrogen bonding in general anesthesia. J Pharm Sci 80:719–724PubMedCrossRefGoogle Scholar
  2. Abood LG, Salem N Jr, MacNeil M, Bloom L, Abood ME (1977) Enhancement of opiate binding by various molecular forms of phosphatidylserine and inhibition by other unsaturated lipids. Biochim Biophys Acta 468:51–62PubMedCrossRefGoogle Scholar
  3. Akeson M, Deamer DW (1991) Anesthetics and membranes: a critical review. In: Aloia RC, Curtain CC, Gordon LM (eds) Drug and anesthetic effects on membrane structure and function. Wiley Liss, New York, pp 71–89Google Scholar
  4. Alifimoff JK, Firestone LL, Miller KW (1989) Anaesthetic potencies of primary alkanols: implications for the molecular dimensions of the anaesthetic site. Br J Pharmacol 96:9–16PubMedGoogle Scholar
  5. Alkana RL, Malcolm RD (1980a) Antagonism of ethanol narcosis in mice by hyperbaric pressures of 4–8 atmospheres. Alcohol Clin Exp Res 4:350–353PubMedCrossRefGoogle Scholar
  6. Alkana RL, Malcolm RD (1980b) The effects of low level hyperbaric treatment on acute ethanol intoxication. Adv Exp Med Biol 126:499–507PubMedGoogle Scholar
  7. Alkana RL, Malcolm RD (1981) Low-level hyperbaric ethanol antagonism in mice. Dose and pressure response. Pharmacology 22:199–208PubMedCrossRefGoogle Scholar
  8. Alkana RL, Malcolm RD (1982) Hyperbaric ethanol antagonism in mice: studies on oxygen, nitrogen, strain and sex. Psychopharmacology 77:11–16PubMedCrossRefGoogle Scholar
  9. Alkana RL, Boone DC, Finn DA (1985a) Temperature dependence of ethanol depression: linear models in male and female mice. Pharmacol Biochem Behav 23:309–316PubMedCrossRefGoogle Scholar
  10. Alkana RL, Finn DA, Galleisky GG, Syapin PJ, Malcolm RD (1985b) Ethanol withdrawal in mice precipitated and exacerbated by hyperbaric exposure. Science 229:772–774PubMedCrossRefGoogle Scholar
  11. Alkana RL, DeBold JF, Finn DA, Babbini M, Syapin PJ (1991) Ethanol-induced depression of aggression in mice antagonized by hyperbaric exposure. Pharmacol Biochem Behav 38:639–644PubMedCrossRefGoogle Scholar
  12. Allan AM, Harris RA (1986) Gamma-aminobutyric acid and alcohol actions: neurochemical studies of long sleep and short sleep mice. Life Sci 39:2005–2015PubMedCrossRefGoogle Scholar
  13. Allan AM, Harris RA (1987) Acute and chronic ethanol treatments alter GAB A receptor-operated chloride channels. Pharmacol Biochem Behav 27:665–670PubMedCrossRefGoogle Scholar
  14. Alling C, Liljequist S, Engel J (1982) The effect of chronic ethanol administration on lipids and fatty acids in subcellular fractions of rat brain. Med Biol 60:149–154PubMedGoogle Scholar
  15. Alling C, Gustavsson L, Änggård E (1983) An abnormal phospholipid in rat organs after ethanol treatment. FEBS Lett 152:24–28PubMedCrossRefGoogle Scholar
  16. Alling C, Becker W, Jones AW, Änggård E (1984) Effects of chronic ethanol treatment on lipid composition and prostaglandins in rats fed essential fatty acid deficient diets. Alcohol Clin Exp Res 8:238–242PubMedCrossRefGoogle Scholar
  17. Alling C, Gustavsson L, Månsson J-E, Benthin G, Änggård E (1984) Phosphatidylethanol formation in rat organs after ethanol treatment. Biochim Biophys Acta 793:119–122PubMedGoogle Scholar
  18. Alling C, Jonsson G, Gustavsson L, Jensen L, Simonsson P (1986) Anionic glycerophospholipids in platelets from alcoholics. Drug Alcohol Depend 16:309–320PubMedCrossRefGoogle Scholar
  19. Asayoka Y (1989) Distinct effects of phosphatidylethanol on three types of rat brain protein kinase C. Kobe J Med Sci 35:229–237Google Scholar
  20. Avdulov NA, Wood WG, Harris RA (1994) Effects of ethanol on structural parameters of rat brain membranes: relationship to genetic differences in ethanol sensitivity. Alcohol Clin Exp Res 18:53–59PubMedCrossRefGoogle Scholar
  21. Babu PP, Nagaraju N, Vemuri MC (1990) Differences in the plasma membrane proteins of chronic alcoholic rat brain. Membr Biochem 9:227–237PubMedCrossRefGoogle Scholar
  22. Baum F (1901) Zur Theorie der Alkoholnarkose. Der Einfluss wechselnder Temperatur auf Wirkungsstärke und Theilungscoefficient der Narcotica. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol 46:338–346CrossRefGoogle Scholar
  23. Besman MJ, Yanagibashi K, Lee TD, Kawamura M, Hall P, Shively JE (1989) Identification of des-(gly-ile)-endozepine as an effector of corticotropin-dependent adrenal steroidogenesis: Stimulation of cholesterol delivery is mediated by the peripheral benzodiazepine receptor. Proc Natl Acad Sei USA 86:4897–4901CrossRefGoogle Scholar
  24. Blank JL, Brattain KA, Exton JH (1992) Activation of cytosolic phosphoinositide phospholipase C by G-protein ßγ subunits. J Biol Chem 267:23069–23075PubMedGoogle Scholar
  25. Blumenthal RS, Flinn IW, Proske O, Jackson DG, Tena RG, Mitchell MC, Feldman AM (1991) Effects of chronic ethanol exposure on cardiac receptor-adenylyl cyclase coupling: studies in cultured embryonic chick myocytes and ethanol fed rats. Alcohol Clin Exp Res 15:1077–1083PubMedCrossRefGoogle Scholar
  26. Bora PS, Lange LG (1993) Molecular mechanism of ethanol metabolism by human brain to fatty acid ethyl esters. Alcohol Clin Exp Res 17:28–30PubMedCrossRefGoogle Scholar
  27. Brennan CH, Littleton JM (1990) Second messenger systems involved in genetic regulation of Ca2+ channels in adrenal chromaffin cells. Neuropharmacology 29:689–693PubMedCrossRefGoogle Scholar
  28. Brennan CH, Littleton JM (1991) Chronic exposure to anxiolytic drugs, working by different mechanisms causes up-regulation of dihydropyridine binding sites on cultured bovine adrenal chromaffin cells. Neuropharmacology 30:199–203PubMedCrossRefGoogle Scholar
  29. Buck KJ, Allan AM, Harris RA (1989) Fluidization of brain membranes by A2C does not produce anesthesia and does not augment muscimol-stimulated 36Cl--flux. Eur J Pharmacol 160:359–367PubMedCrossRefGoogle Scholar
  30. Buck KJ, Hahner L, Sikela J, Harris R (1991) Chronic ethanol treatment alters brain levels of y-aminobutyric acidA receptor subunit mRNAs: relationship to genetic differences in ethanol withdrawal seizure severity. J Neurochem 57:1452–1455PubMedCrossRefGoogle Scholar
  31. Cattel MK (1936) The physiological effects of pressure. Biol Rev 11:441–476CrossRefGoogle Scholar
  32. Charness ME, Querimet LA, Henteleff M (1988) Ethanol differentially regulates G proteins in neural cells. Biochem Biophys Res Commun 155:138–143PubMedCrossRefGoogle Scholar
  33. Chin JH, Goldstein DB (1977) Drug tolerance in biomembranes: a spin label study of the effects of ethanol. Science 196:684–685PubMedCrossRefGoogle Scholar
  34. Chin JH, Parsons LM, Goldstein DB (1978) Increased cholesterol content of erythrocyte and brain membranes in ethanol-tolerant mice. Biochim Biophys Acta 513:358–363PubMedCrossRefGoogle Scholar
  35. Chiou J-S, Kuo C-C, Lin SH, Kamaya H, Ueda I (1991) Interfacial dehydration by alcohols: hydrogen bonding of alcohols to phospholipids. Alcohol 8:143–150PubMedCrossRefGoogle Scholar
  36. Crabbe JC (1983) Sensitivity of ethanol in inbred mice: genotypic correlations among several behavioral responses. Behav Neurosci 97:280–289PubMedCrossRefGoogle Scholar
  37. Crews FT, Camacho A, Phillips I, Tjeenk Willink EC, Calderini G, Hirata FL, Axelrod J, McGivney A, Siraganian R (1991) Effects of membrane fluidity on mast cell and nerve cell function. In: Horrocks LA, Kanfer JN, Porcellati G (eds) Phospholipids in the nervous system, vol 1: metabolism. Raven, New York, pp 237–245Google Scholar
  38. Crews FT, Majchrowicz ER, Meeks R (1983) Changes in cortical synaptosomal plasma membrane fluidity and composition in ethanol-dependent rats. Psychopharm 81:208–213CrossRefGoogle Scholar
  39. Daniell LC, Leslie SW (1986) Inhibition of fast phase calcium uptake and endogenous norepinephrine release in rat brain region synaptosomes by ethanol. Brain Res 377:18–28PubMedCrossRefGoogle Scholar
  40. Daniell LC, Harris RA (1989) Ethanol and inositol 1,4,5-triphosphate release calcium from separate stores of brain microsomes. J Pharmacol Exp Ther 250:875–881PubMedGoogle Scholar
  41. Daniell LC, Barr EM, Leslie SW (1983) 45Ca2+ uptake into rat whole brain synaptosomes unaltered by dihydropyridine calcium antagonists. J Neurochem 41:1455–1459PubMedCrossRefGoogle Scholar
  42. Daniell LC, Brass EP, Harris RA (1987) Effect of ethanol on intracellular ionized calcium concentrations in synaptosomes and hepatocytes. Mol Pharmacol 32: 831–837PubMedGoogle Scholar
  43. Davidson M, Wilce P, Shanley B (1988) Ethanol increases synaptosomal free calcium concentration. Neurosci Lett 90:165–169CrossRefGoogle Scholar
  44. Davidson M, Wilce P, Shanley B (1990) Ethanol and synaptosomal calcium homeostasis. Biochem Pharmacol 39:1283–1288PubMedCrossRefGoogle Scholar
  45. Diamond I, Wrubel B, Estrin W, Gordon A (1987) Basal and adenosine receptor-stimulated levels of cAMP are reduced in lymphocytes from alcoholic patients. Proc Natl Acad Sci USA 84:1413–1416PubMedCrossRefGoogle Scholar
  46. Diamond I, Nagy L, Mochly-Rosen D, Gordon A (1991) The role of adenosine and adenosine transport in ethanol-induced cellular tolerance and dependence. Possible biologic and genetic markers of alcoholism. Ann NY Acad Sci 625: 473–487PubMedCrossRefGoogle Scholar
  47. Dolin SJ, Little HJ (1989) Are changes in neuronal calcium channels involved in ethanol tolerance? J Pharmacol Exp Ther 250:985–991PubMedGoogle Scholar
  48. Dolin SJ, Little HJ (1991) Augmentation by calcium channel antagonists of general anaesthetic potency in mice. Br J Pharmacol 88:909–914Google Scholar
  49. Dolin SJ, Little HJ, Hudspith M, Pagonis C, Littleton JM (1986) Increased dihydropyridine calcium channels in rat brain may underlie ethanol physical dependence. Neuropharmacology 26:270–275Google Scholar
  50. East JM, Jones WT, Simmonds AC, Lee AG (1984) Membrane fluidity is not an important physiological regulator of the (Ca2+-Mg2+)-dependent ATPase of sarcoplasmic reticulum. J Biol Chem 259:8070–8071PubMedGoogle Scholar
  51. Ferguson J (1939) The use of chemical potentials as indices of toxicity. Proc R Soc B 127:387–404CrossRefGoogle Scholar
  52. Finn DA, Bejanian M, Jones BL, McGivern FR, Syapin PJ, Crabbe JC, Alkana RL (1990) Body temperature differentially affects ethanol sensitivity in both inbred strains and selected lines of mice. J Pharmacol Exp Ther 253:1229–1235PubMedGoogle Scholar
  53. Finn DA, Boone DC, Alkana RL (1986) Temperature dependence of ethanol depression in rats. Psychopharmacology 90:185–189PubMedCrossRefGoogle Scholar
  54. Floreani M, Bonetti AC, Carpenedo F (1981) Increase of Na+/K+ ATPase activity in intact rat brain synaptosomes after their interaction with phosphatidylserine vesicles. Biochem Biophys Res Commun 101:1337–1344PubMedCrossRefGoogle Scholar
  55. Floreani M, Carpenedo F (1987) Phosphatidylserine vesicles increase rat brain synaptosomal adenylyl cyclase activity. Biochem Biophys Res Commun 145:631–636PubMedCrossRefGoogle Scholar
  56. Foster AC, Fagg GE, Harris EW, Cotman CW (1982) Regulation of glutamate receptors: possible role of phosphatidylserine. Brain Res 242:374–377PubMedCrossRefGoogle Scholar
  57. Franks NP, Lieb WR (1981) Is membrane expansion relevant to anesthesia? Nature 292:248–251PubMedCrossRefGoogle Scholar
  58. Franks NP, Lieb WR (1982) Molecular mechanisms of general anesthesia. Nature 300:487–493PubMedCrossRefGoogle Scholar
  59. Franks NP, Lieb WR (1984) Do general anesthetics act by competitive binding to specific receptors? Nature 310:599–601PubMedCrossRefGoogle Scholar
  60. Franks NP, Lieb WR (1985) Mapping of general anesthetic target sites provides a molecular basis for cutoff effects. Nature 316:349–351PubMedCrossRefGoogle Scholar
  61. Franks NP, Lieb WR (1986) Partitioning of long-chain alcohols into lipid bilayers: implications for mechanisms of general anesthesia. Proc Natl Acad Sci USA 83:5116–5120PubMedCrossRefGoogle Scholar
  62. Franks NP, Lieb WR (1988) Volatile anesthetics activate a novel neuronal K+ current. Nature 333:662–664PubMedCrossRefGoogle Scholar
  63. Franks NP, Lieb WR (1990) Mechanisms of general anesthesia. Environ Health Perspect 87:199–205PubMedCrossRefGoogle Scholar
  64. Franks NP, Lieb WR (1991) Stereospecific effects of inhalational general anesthetic optical isomers on nerve ion channels. Science 254:427–430PubMedCrossRefGoogle Scholar
  65. Freissmuth P, Casey J, Gilman AG (1989) G proteins control diverse pathways of transmembrane signaling. FASEB J 3:2125–2131PubMedGoogle Scholar
  66. Gandhi CR, Ross DH (1989) Influence of ethanol on calcium, inositol phospholipids and intracellular signalling mechanisms. Experientia 45:407–413PubMedCrossRefGoogle Scholar
  67. Garrett KM, Ross DH (1983) Effects of in vivo ethanol administration of Ca2+/Mg2+ ATPase and ATP-dependent Ca2+ uptake activity in synaptosomal membranes. Neurochem Res 8:1013–1028PubMedCrossRefGoogle Scholar
  68. Goldstein DB, Chin JH, Lyon RC (1982) Ethanol disordering of spin-labeled mouse brain membranes: correlation with genetically determined ethanol sensitivity of mice. Proc Natl Acad Sci USA 799:4231–4233CrossRefGoogle Scholar
  69. Gordon ER, Rochman J, Arai M, Lieber CS (1982) Lack of correlation between hepatic mitochondrial membrane structure and functions in ethanol-fed rats. Science 216:1319–1321PubMedCrossRefGoogle Scholar
  70. Grant KA, Valverius P, Hudspith M, Tabakoff B (1990) Ethanol withdrawal seizures and the NMDA receptor complex. Eur J Pharmacol 176:289–296PubMedCrossRefGoogle Scholar
  71. Greenberg DA, Cooper EC, Gordon A, Diamond I (1984) Ethanol and the gammaaminobutyric acid-benzodiazepine receptor complex. J Neurochem 42:1062–1068PubMedCrossRefGoogle Scholar
  72. Grieve SJ, Littleton JM (1979) Ambient temperature and the development of functional tolerance to ethanol by mice. J Pharm Pharmacol 31:707–708PubMedCrossRefGoogle Scholar
  73. Guidotti A, Forchetti CM, Corda MG, Konkel D, Bennett CD, Costa C (1983) Isolation, characterization, and purification to homogeneity of an endogenous polypeptide with agonistic action on benzodiazepine receptors. Proc Natl Acad Sci USA 80:3531–3535PubMedCrossRefGoogle Scholar
  74. Gustavsson L (1990) Brain lipid changes after ethanol exposure. Up J Med Sci Suppl 48:245–266Google Scholar
  75. Gustavsson L, Moehren G, Hoek JB (1991) Phosphatidylethanol formation in rat hepatocytes. Ann NY Acad Sci 625:438–440PubMedCrossRefGoogle Scholar
  76. Halsey MJ, Wardley-Smith B (1975) Pressure reversal of narcosis produced by anesthetics, narcotics and tranquilizers. Nature 257:811–813PubMedCrossRefGoogle Scholar
  77. Halsey MJ, Wardley-Smith B, Green CJ (1978) Pressure reversal of general anaesthesia - a multi-site expansion hypothesis. Br J Anaesth 50:1091–1097PubMedCrossRefGoogle Scholar
  78. Harris RA, Bruno P (1985) Membrane disordering by anesthetic drugs: relationship to synaptosomal sodium and calcium fluxes. J Neurochem 44:1274–1281PubMedCrossRefGoogle Scholar
  79. Harris RA, Hood WF (1980) Inhibition of synaptosomal calcium uptake by ethanol. J Pharmacol Exp Ther 213:562–568PubMedGoogle Scholar
  80. Harris RA, Schroeder F (1981) Ethanol and the physical properties of brain membranes. Fluorescence studies. Mol Pharmacol 20:128–137PubMedGoogle Scholar
  81. Harris RA, Baxter DM, Mitchell MA, Hitzemann RJ (1984) Physical properties and lipid composition of brain membranes from ethanol tolerant-dependent mice. Mol Pharmacol 25:401–409PubMedGoogle Scholar
  82. Herbette L, Napolitano CA, Messineo FC, Katz AM (1985) Interaction of amphiphilic molecules with biological membranes. A model for nonspecific and specific drug effects with membranes. Adv Myocardiol 5:333–346PubMedGoogle Scholar
  83. Herbette LG, Chester DW, Rhodes DG (1986) Structural analysis of drug molecules in biological membranes. Biophys J 49:91–94PubMedCrossRefGoogle Scholar
  84. Hill MW, Bangham AD (1975) General depressant drug dependency: a biophysical hypothesis. Adv Exp Med Biol 59:1–9PubMedGoogle Scholar
  85. Hitzemann RJ, Schueler HE, Graham-Brittain C, Kreishman GP (1986) Ethanol-induced changes in neuronal membrane order. Biochim Biophys Acta 859:189–197PubMedCrossRefGoogle Scholar
  86. Hoffman PL, Tabakoff B (1990) Ethanol and guanine nucleotide binding proteins: a selective interaction. FASEB J 4:2612–2622PubMedGoogle Scholar
  87. Hubbell WL, Metcalfe JC, Metcalfe SM, McConnell HM (1970) The interaction of small molecules with spin-labelled erythrocyte membranes. Biochim Biophys Acta 219:415–427PubMedCrossRefGoogle Scholar
  88. Huidobro-Toro JP, Bleck V, Allan AM, Harris RA (1987) Neurochemical actions of anesthetic drugs on the y-aminobutyric acid receptor-chloride channel complex. J Pharmacol Exp Ther 242:963–969PubMedGoogle Scholar
  89. Hungund BL, Goldstein DB, Villegas F, Cooper TB (1988) Formation of fatty acid ethyl esters during chronic ethanol treatment in mice. Biochem Pharmacol 37:3001–3004PubMedCrossRefGoogle Scholar
  90. Im WB, Blakeman DP, Davis JP, Ayer DE (1990) Studies on the mechanism of interactions between anesthetic steroids and y-aminobutyric acidA receptors. Mol Pharmacol 37:429–434PubMedGoogle Scholar
  91. Israel Y (1970) Cellular effects of alcohol: a review. Q J Stud Alcohol 31:293–316PubMedGoogle Scholar
  92. Israel Y, Kalant H, Laufer I (1965) Effect of ethanol on electrolyte transport and electrogenesis in animal tissues. J Cell Comp Physiol 65:127–132CrossRefGoogle Scholar
  93. Johnson FH, Brown ES, Marsland DA (1942) Pressure reversal of the action of certain narcotics. J Cell Comp Physiol 20:269–276CrossRefGoogle Scholar
  94. Johnson FH, Flagler EA (1950) Hydrostatic pressure reversal of narcosis in tadpoles. Science 112:91–92PubMedCrossRefGoogle Scholar
  95. Kikuchi A, Kozawa O, Kaibuchi K, Katada T, Ui M, Takai Y (1993) Direct evidence for involvement of a guanine nucleotide-binding protein chemotactic peptide-stimulated formation of inositol biphosphate and trisphosphate in differentiated human leukemic (HL-60) cells. J Biol Chem 261:11558–11562Google Scholar
  96. Knapp RJ, Malatynska E, Yamamura HI (1990) From binding studies to the molecular biology of GAB A receptors. Neurochem Res 15:105–112PubMedCrossRefGoogle Scholar
  97. Kobayashi M, Kanfer JN (1987) Phosphatidylethanol formation via transphosphatidylation by rat brain synaptosomal phospholipase D. J Neurochem 48:1597–1603PubMedCrossRefGoogle Scholar
  98. Kobayashi T, Storrie B, Simons K, Dotti CG (1992) A functional barrier to movement of lipids in polarized neurons. Nature 359:647–650PubMedCrossRefGoogle Scholar
  99. Kreishman GP, Graham-Brittain C, Hitzemann RJ (1985) Determination of ethanol partition coefficients to the interior and the surface of dipalmityl-phosphatidylcholine liposomes using deuterium nuclear magnetic resonance spectroscopy. Biochem Biophys Res Commun 130:301–301PubMedCrossRefGoogle Scholar
  100. Lange LG (1991) Mechanism of fatty acid ethyl ester formation and biological significance. Ann NY Acad Sci 625:802–805PubMedCrossRefGoogle Scholar
  101. Laposata E, Lange LG (1986) Presence of non-oxidative ethanol metabolism in human organs commonly damaged by ethanol abuse. Science 231:497–499PubMedCrossRefGoogle Scholar
  102. Lee AG (1976) Model for action of local anesthetics. Nature 262:545-548PubMedCrossRefGoogle Scholar
  103. Lee AG (1988) Annular lipids and the activity of the calcium-dependent ATPase. In: Aloia RA, Curtain CC, Gordon LM (eds) Lipid domains and the relationship to membrane function. Alan R. Liss, Inc., New York, pp 111–139Google Scholar
  104. Lee AG (1991) Lipids and their effects on membrane proteins: evidence against a role for fluidity. Prog Lipid Res 30:323–348PubMedCrossRefGoogle Scholar
  105. Lee CH, Park D, Wu D, Rhee SG, Simon MI (1992) Members of the Gq subunit gene family activate phospholipase C β isozymes. J Biol Chem 2267:16044–16047Google Scholar
  106. Lee Y-C, Taraschi TF, James N (1993) Support for the shape concept of lipid structure based on a headgroup volume approach. Biophys J 65:1429–1432PubMedCrossRefGoogle Scholar
  107. Leslie SW, Barr E, Chandler LJ (1983a) Comparison of voltage-dependent 45Ca2+ uptake rates by synaptosomes isolated from rat brain regions. J Neurochem 41:1602–1605PubMedCrossRefGoogle Scholar
  108. Leslie SW, Barr E, Chandler J, Farrar RP (1983b) Inhibition of fast-and slow-phase depolarization dependent synaptosomal calcium uptake by ethanol. J Pharmacol Exp Ther 225:571–575PubMedGoogle Scholar
  109. Leslie SW, Brown LM, Dildy JE, Sims JS (1990) Ethanol and neuronal calcium channels. Alcohol 7:233–236PubMedCrossRefGoogle Scholar
  110. Lever MJ, Miller KW, Paton WD, Smith EB (1971) Pressure reversal of anesthesia. Nature 231:368–371PubMedCrossRefGoogle Scholar
  111. Levitzki A (1990) Dual control of adenylate cyclase. In: Houslay MD, Milligan G (eds) G-proteins as mediators of cellular signaling processes. John Wiley and Sons, New York, pp 1–14Google Scholar
  112. Li C, Peoples RW, Weight FF (1993) Alcohols inhibit ATP-activated ion current by a direct interaction with the channel protein. Society for Neuroscience Abstracts 19:283Google Scholar
  113. Lipnick RL (1989) Hans Horst Meyer and the lipoid theory of narcosis. Trends Pharmacol Sci 10:265–269PubMedCrossRefGoogle Scholar
  114. Little HJ, Dolin LH, Halsey MJ (1986) Calcium channel antagonists decrease the ethanol withdrawal syndrome. Life Sci 39:2059–2065PubMedCrossRefGoogle Scholar
  115. Littleton JM, John G (1977) Synaptosomal membrane lipids of mice during continuous exposure to ethanol. J Pharm Pharmacol 29:579–580PubMedCrossRefGoogle Scholar
  116. Littleton JM, Brennan C, Bouchenafa O (1991) The role of calcium flux in the central nervous system actions of ethanol. Ann NY Acad Sci 625:388–394PubMedCrossRefGoogle Scholar
  117. Littleton JM, John GR, Grieve SJ (1979) Alterations in phospholipid composition in ethanol tolerance and dependence. Alcohol Clin Exp Res 3:50–56PubMedCrossRefGoogle Scholar
  118. Lüddens H, Wisden W (1991) Function and pharmacology of multiple GABAA receptor subunits. Trends Pharmacol Sci 12:49–51PubMedCrossRefGoogle Scholar
  119. Lundqvist C, Rodriguez FD, Simonsson P, Ailing C, Gustavsson L (1993) Phosphatidylethanol affects inositol 1,4,5-triphosphate levels in NG108–15 neuroblastoma x glioma hybrid cells. J Neurochem 60:738–744PubMedCrossRefGoogle Scholar
  120. Luthin GR, Tabakoff B (1984) Activation of adenylyl cyclase by alcohols requires the nucleotide-binding protein. J Pharmacol Exp Ther 288:579–587Google Scholar
  121. Lynch MA, Littleton JM (1983) Possible association of alcohol tolerance with increased synaptic Ca2+ sensitivity. Nature 303:175–176PubMedCrossRefGoogle Scholar
  122. Lyon RC, McComb JA, Schreurs J, Goldstein DB (1981) A relationship between alcohol intoxication and the disordering of brain membranes by a series of short-chain alcohols. J Pharmacol Exp Ther 218:669–675PubMedGoogle Scholar
  123. Machu T, Woodward JJ, Leslie SW (1989) Ethanol and inositol 1,4,5-trisphosphate mobilize calcium from rat brain microsomes. Alcohol 6:431–436PubMedCrossRefGoogle Scholar
  124. Malcolm R, Alkana RL (1982) Hyperbaric ethanol antagonism: role of temperature, blood and brain ethanol concentrations. Pharmacol Biochem Behav 16:341–346PubMedCrossRefGoogle Scholar
  125. Manji HK (1992) G-protein: implications for psychiatry. Am J Psychiatry 149:749–760Google Scholar
  126. McCreery MJ, Hunt WA (1978) Physico-chemical correlates of alcohol intoxication. Neuropharmacology 17:451–461PubMedCrossRefGoogle Scholar
  127. McNamee MG, Fong TM (1988) Effects of membrane lipids and fluidity on acetylcholine receptor function. In: Aloia RC, Curtain CC, Gordon LM (eds) Lipid domains and the relationship to membrane function. Liss, New York, pp 43–62Google Scholar
  128. Messing RO, Carpenter CI, Diamond I, Greenberg DA (1986) Ethanol regulates calcium channels in clonal neural cells. Proc Natl Acad Sci USA 83:6213–6215PubMedCrossRefGoogle Scholar
  129. Messing RO, Petersen PJ, Henrich CJ (1991) Chronic ethanol exposure increases levels of protein kinase C δ and ε and protein kinase C-mediated phosphorylation in cultured neural cells. J Biol Chem 266:23428–23432PubMedGoogle Scholar
  130. Metcalfe JC, Seeman P, Burgen ASV (1968) The proton relaxation of benzyl alcohol in erythrocyte membranes. Mol Pharmacol 4:87–95PubMedGoogle Scholar
  131. Meyer H (1899) Zur Theorie der Alkoholnarkose. Welche Eigenschaft der Anästhetica bedingt ihre narkotische Wirkung? Naunyn Schmiedebergs Arch Exp Pathol Pharmakol 42:109–118CrossRefGoogle Scholar
  132. Meyer H (1901) Zur Theorie der Alkoholnarkose. 3. Mittheilung: Der Einfluss wechselnder Temperatur auf Wirkungsstärke und Theilungscoefficient der Narcotica. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol 46:338–346 (see also corrections, ibid. p 431)CrossRefGoogle Scholar
  133. Meyer KH (1937) Contributions to the theory of narcosis. Trans Faraday Soc 33:1062–1068CrossRefGoogle Scholar
  134. Mhatre MC, Ticku MK (1992) Chronic ethanol administration alters y-aminobutyric acidA receptor gene expression. Mol Pharmacol 42:415–422PubMedGoogle Scholar
  135. Mihic SJ, Wu PH, Kalant H (1991) Potentiation of y-aminobutyric acid-mediated chloride flux by pentobarbital and diazepam but not ethanol. J Neurochem 58:745–751CrossRefGoogle Scholar
  136. Miles MF, Barhite S, Sganga M, Elliott M (1993) Phosducin-like protein: an ethanol-responsive potential modulator of guanine nucleotide-binding protein function. Proc Natl Acad Sci USA 90:10831–10835PubMedCrossRefGoogle Scholar
  137. Miles MF, Diaz JE, DeGuzman VS (1991) Mechanisms of neuronal adaptation to ethanol. J Biol Chem 266:2409–2414PubMedGoogle Scholar
  138. Miller KW (1985) The nature of the site of general anesthesia. Int Rev Neurobiol 27:1–61PubMedCrossRefGoogle Scholar
  139. Miller KW, Paton DM, Smith EB (1973) The pressure reversal of general anesthesia and the critical volume hypothesis. Mol Pharmacol 9:131–143PubMedGoogle Scholar
  140. Miller KW, Firestone LL, Alifimoff JK, Streicher P (1989) Nonanesthetic alcohols dissolve in synaptic membranes without perturbing their lipids. Proc Natl Acad Sci USA 86:1084–1087PubMedCrossRefGoogle Scholar
  141. Mochly-Rosen D, Chang F-H, Cheever L, Kim M, Diamond I, Gordon AS (1988) Chronic ethanol causes heterologous desensitization of receptors by reducing αs messenger RNA. Nature 333:848–850PubMedCrossRefGoogle Scholar
  142. Molski TFP, Naccache PH, Marsh ML, Kermode J, Becker EL, Sha’afi RI (1985) Pertussis toxin inhibits the rise in the intracellular concentration of free calcium that is induced by chemotactic factors in rabbit neutrophils: possible role of the “G proteins” in stimulus-response coupling. Biochem Biophys Res Commun 126:1174–1181PubMedCrossRefGoogle Scholar
  143. Montpied P, Morrow A, Karanian J, Ginns EI, Martin BM, Paul SM (1991) Prolonged ethanol inhalation decreases y-aminobutyric acidA receptor α subunit mRNAs in the rat cerebral cortex. Mol Pharmacol 39:157–163PubMedGoogle Scholar
  144. Moreno FJ, Mills I, Gracia-Sainz JA, Fain JN (1983) Effects of pertussis toxin treatment on the metabolism of rat adipocytes. J Biol Chem 25:10938–10943Google Scholar
  145. Moring J, Volpi M (1992) ADP-ribosylation of G-proteins in rat cerebral cortex: effects of acute and chronic ethanol exposure. Alcohol Clin Exp Res 16: 392Google Scholar
  146. Moring J, Shoemaker WJ, Skita V, Mason RP, Hayden HC, Salomon RM, Herbette LG (1990) Rat cerebral cortical synaptoneurosomal membranes. Structure and interactions with imidazobenzodiazepine and 1,4-dihydropyridine calcium channel drugs. Biophys J 58:513–531PubMedCrossRefGoogle Scholar
  147. Morrow AL, Suzdak PD, Karanian JW, Paul SM (1988) Chronic ethanol administration alters y-aminobutyric acid, pentobarbital and ethanol-mediated 36Cl- uptake in cerebral cortical synaptoneurosomes. J Pharmacol Exp Ther 246:158–164PubMedGoogle Scholar
  148. Moss GWJ, Lieb WR, Franks NP (1991) Anesthetic inhibition of firefly luciferase, a protein model for general anesthesia, does not exhibit pressure reversal. Biophys J 60:1309–1314PubMedCrossRefGoogle Scholar
  149. Mueller GC, Fleming MF, LeMahieu MA, Lybrand CS, Barry KJ (1988) Synthesis of phosphatidylethanol - a potential marker for adult males at risk for alcoholism. Proc Natl Acad Sci USA 85:9778–9782PubMedCrossRefGoogle Scholar
  150. Mullins LJ (1954) Some physical mechanisms in narcosis. Chem Rev 54:289–323CrossRefGoogle Scholar
  151. Nagy LE, DeSilva SEF (1992) Ethanol increases receptor-dependent cyclic AMP production in cultured hepatocytes by decreasing Gi-mediated inhibition. Biochem J 286:681–686PubMedGoogle Scholar
  152. Nagy LE, Diamond I, Collier K, Lopez L, Ullman B, Gordon AS (1989) Adenosine is required for ethanol-induced heterologous desensitization. Mol Pharmacol 36:744–748PubMedGoogle Scholar
  153. Nhamburo PT, Salafsky BP, Tabakoff B, Hoffman PL (1987) Effects of ethanol on ouabain inhibition of mouse brain (Na+, K+) ATPase activity. Biochem Pharmacol 36:2027–2033PubMedCrossRefGoogle Scholar
  154. Olsen RW, Tobin AJ (1990) Molecular biology of GABAa receptors. FASEB J 4:1469–1480PubMedGoogle Scholar
  155. Omodeo-Sale F, Lindi C, Palestini P, Masserini M (1991) Role of phosphatidylethanol in membranes. Effects on membrane fluidity, tolerance to ethanol, and activity of membrane-bound enzymes. Biochem 30:2477–2482CrossRefGoogle Scholar
  156. Overton E (1896) Über die osmotischen Eigenschaften der Zelle in ihrer Bedeutung für die Toxicologic und Pharmakologie. Z Phys Chem 22:189–209Google Scholar
  157. Overton E (1901) Studien über die Narkose, zugleich ein Beitrag zur allgemeinen Physiologie. Gustav Fischer, JenaGoogle Scholar
  158. Pang K-YY, Braswell LM, Chang L, Sommer TJ, Miller KW (1980) The perturbation of lipid bilayers by general anesthetics: a quantitative test of the disordered lipid hypothesis. Mol Pharmacol 18:84–90PubMedGoogle Scholar
  159. Panza G, Grebb JA, Sanna E, Wright AG Jr, Handbauer I (1985) Evidence for down-regulation of 3H-nitrendipine recognition sites in mouse brain after long-term treatment with nifedipine or verapamil. Neuropharmacology 24:1113–1117PubMedCrossRefGoogle Scholar
  160. Park D, Jhon D-K, Lee C-W, Lee K-H, Rhee SG (1993) Activation of phospholipase C isozymes by G protein ßy subunits. J Biol Chem 268:4573–4576PubMedGoogle Scholar
  161. Pohorecky LA, Rizek AE (1981) Biochemical and behavioral effects of acute ethanol in rats at different environmental temperatures. Psychopharmacol 72: 205–209CrossRefGoogle Scholar
  162. Puddey IB, Beilin LJ, Vandongen R (1986) Lack of effect of acute alcohol ingestion of erythrocyte Na+, K+-ATPase activity or passive sodium uptake in vivo in man. J Stud Alcohol 47:489–494PubMedGoogle Scholar
  163. Quinlan JJ, Firestone LL (1992) Ligand-dependent effects of ethanol and diethylether at brain benzodiazepine receptors. Pharmacol Biochem Behav 42:787–790PubMedCrossRefGoogle Scholar
  164. Rabe CS, Giri PR, Hoffman PL, Tabakoff B (1990) Effect of ethanol on cyclic AMP levels in intact PC12 cells. Biochem Pharmacol 40:565–571PubMedCrossRefGoogle Scholar
  165. Rabin RA, Molinoff PB (1983) Multiple sites of action of ethanol on adenylyl cyclase. J Pharmacol Exp Ther 227:551–556PubMedGoogle Scholar
  166. Rhee SG, Choi KD (1992) Regulation of inositol phospholipid-specific phospholipase C isozymes. J Biol Chem 267:12393–12396PubMedGoogle Scholar
  167. Ross DH, Mutchler TM, Grady MM (1979) Calcium and glycoprotein metabolism as correlates for ethanol preference and sensitivity. Alcohol Clin Exp Res 3:64–69PubMedCrossRefGoogle Scholar
  168. Rottenberg H, Bittman R, Li J-L (1992) Resistance to ethanol disordering of membranes from ethanol-fed rats is conferred by all phospholipid classes. Biochim Biophys Acts 1123:282–290Google Scholar
  169. Rottenberg H, Waring A, Rubin E (1981) Tolerance and cross-tolerance in chronic alcoholics: reduced membrane binding of ethanol and other drugs. Science 213:583–585PubMedCrossRefGoogle Scholar
  170. Rowe ES (1985) Thermodynamic reversibility of phase transitions. Specific effects of alcohols on phosphatidylcholines. Biochim Biophys Acta 813:321–330PubMedCrossRefGoogle Scholar
  171. Sagi-Eisenberg R (1989) GTP-binding proteins as possible targets for protein kinase C action. Trend Biochem Sci 14:355–357PubMedCrossRefGoogle Scholar
  172. Saito T, Luthin GR, Lee JM, Hoffman PL, Tabakoff B (1987) Differential effects of ethanol on the striatal and cortical adenylyl cyclase system. Japan J Pharmacol 43:133–141CrossRefGoogle Scholar
  173. Salem N Jr, Karanian JW (1988) Polyunsaturated fatty acids and ethanol. Adv Alcohol Subst Abuse 7:183–197PubMedCrossRefGoogle Scholar
  174. Salem N Jr, Ward G (1993) The effects of ethanol on polyunsaturated fatty acid composition. In: Ailing C, Sun G (eds) Alcohol, cell membranes and signal transduction in the brain. Plenum Press, New York, pp 33–46CrossRefGoogle Scholar
  175. Schroeder F, Morrison WJ, Gorka C, Wood WG (1988) Transbilayer effects of ethanol on fluidity of brain membrane leaflets. Biochim Biophys Acta 946:85–94PubMedCrossRefGoogle Scholar
  176. Seeman P (1972) The membrane actions of anesthetics and tranquilizers. Pharmacol Rev 24:583–655PubMedGoogle Scholar
  177. Seeman P, Roth S (1972) General anesthetics expand cell membranes at surgical concentrations. Biochim Biophys Acta 255:171–177PubMedCrossRefGoogle Scholar
  178. Shoemaker WJ, Moring J, Ganley L, Shaw J, Xu J, Seale E (1992) Chronic ethanol effects on MK-801 binding: age and brain regional differences. Alcohol Clin Exper Res 16:365Google Scholar
  179. Sieghart W, Fuchs K, Zezula J, Buchstaller A, Zimprich F, Lassman H (1992) Biochemical, immunological, and pharmacological characterization of GABAA-benzodiazepine receptor subtypes. In: Biggio G, Concas A, Costa E (eds) GABAergic synaptic transmission: molecular, pharmacological, and clinical aspects. Raven, New York, pp 155–162 (Advances in biochemical pharmacology, vol 4)Google Scholar
  180. Simon SA, Mcintosh TJ (1984) Interdigitated hydrocarbon chain packing causes the biphasic transition behavior in lipid/alcohol suspensions. Biochim Biophys Acta 773:169–172PubMedCrossRefGoogle Scholar
  181. Simonsson P, Rodriguez FS, Loman N, Ailing C (1991) G proteins coupled to phospholipase C: molecular targets of long-term ethanol exposure. J Neurochem 56:2018–2026PubMedCrossRefGoogle Scholar
  182. Singer SJ, Nicholson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731PubMedCrossRefGoogle Scholar
  183. Skattebøl A, Rabin RA (1987) Effects of ethanol on 45Ca2+ uptake in synaptosomes and in PC12 cells. Biochem Pharmacol 36:2227–2229PubMedCrossRefGoogle Scholar
  184. Smith EB, Bowser-Riley F, Daniels S, Dunbar IT, Harrison CB, Paton WDM (1984) Species variation and the mechanism of pressure-anaesthetic interactions. Nature 311:56–57PubMedCrossRefGoogle Scholar
  185. Smith TL, Gerhart MJ (1982) Alterations in brain lipid composition of mice made physically dependent to ethanol. Life Sci 31:1419–1425PubMedCrossRefGoogle Scholar
  186. Smrcka AV, Sternweis PC (1993) Regulation of purified subtypes of phosphatidylinositol-specific phospholipase C β by G protein α and βγ subunits. J Biol Chem 268:9667–9674PubMedGoogle Scholar
  187. Squier TC, Bigelow DJ, Thomas DD (1988) Lipid fluidity directly modulates the overall protein rotational mobility of the Ca-ATPase in sarcoplasmic reticulum. J Biol Chem 263:9178–9186PubMedGoogle Scholar
  188. Sternweis PC, Smrcka AV (1993) G proteins in signal transduction: the regulation of phospholipase C. In: Marsh J, Good J (eds) The GTPase superfamily. John Wiley & Sons, New York, pp 96–111Google Scholar
  189. Stibler H, Beaugé F, Leguicher A, Borg S (1991) Biophysical and biochemical alterations in erythrocyte membranes from chronic alcoholics. Scand J Clin Lab Invest 51:309–319PubMedCrossRefGoogle Scholar
  190. Sun GY, Sun AY (1983) Chronic ethanol administration induced an increase in phosphatidylserine in guinea pig synaptic plasma membranes. Biochem Biophys Res Commun 113:262–268PubMedCrossRefGoogle Scholar
  191. Sun Gy, Huang H-M, Lee D-Z, Sun AY (1984) Increased acidic phospholipids in rat brain membranes after chronic administration. Life Sci 35:2127–2133PubMedCrossRefGoogle Scholar
  192. Suzdak PD, Schwartz RD, Skolnick P, Paul SM (1986) Ethanol stimulates gammaaminobutyric acid receptor-mediated chloride transport in rat brain synaptoneurosomes. Proc Natl Acad Sci USA 83:4071–4075PubMedCrossRefGoogle Scholar
  193. Tabakoff B, Melchior C, Hoffman P (1984) Factors in ethanol tolerance. Science 224:523–524PubMedCrossRefGoogle Scholar
  194. Tabakoff B, Ritzmann RF, Raju TS, Deitrich RA (1980) Characterization of acute and chronic tolerance in mice selected for inherent differences in sensitivity to ethanol. Alcohol Clin Exp Res 4:70–73PubMedCrossRefGoogle Scholar
  195. Tang W-J, Iniguez-Lluhi JA, Mumby S, Gilman AG (1992) Regulation of mammalian adenylyl cyclases by G-proteinα and βγ subunits. Cold Spring Harbor Symposia on Quantitative Biology 52:135–144Google Scholar
  196. Taraschi TF, Ellingson JS, Wu A, Zimmerman R, Rubin E (1986) Phosphatidylinositol from ethanol-fed rats confers membrane tolerance to ethanol. Proc Natl Acad Sci USA 83:9398–9402PubMedCrossRefGoogle Scholar
  197. Taraschi TF, Ellingson JS, Wu-Sun A, Zimmerman R, Rubin E (1990) Rats withdrawn from ethanol rapidly re-acquire membrane tolerance after resumption of ethanol feeding. Biochim Biophys Acta 1021:51–55PubMedCrossRefGoogle Scholar
  198. Taussig R, Inguinez-Lluhi JA, Gilman AG (1993) Inhibition of adenylyl cyclase by Gi α Science 261:218–221Google Scholar
  199. Tewari S, Sytinski IA (1985) Alcohol. In: Lajtha A (ed) Alterations of metabolites in the nervous system. Plenum, New York, pp 219–261, (Handbook of neurochemistry, 2nd edn, vol 9)Google Scholar
  200. Treistman SN, Moynihan MM, Wolf DF (1987) Influence of alcohol, temperature, and region on the mobility of lipids in neuronal membrane. Biochim Biophys Acta 898:109–120PubMedCrossRefGoogle Scholar
  201. Trudell JR, Hubbell WL, Cohen EN (1973a) Pressure reversal of inhalation anesthetic-induced disorder in spin-labeled phospholipid vesicles. Biochim Biophys Acta 291:328–334PubMedCrossRefGoogle Scholar
  202. Trudell JR, Hubbell WL, Cohen EN, Kendig JJ (1973b) Pressure reversal of anesthesia. Anesthesiology 38:207–211PubMedCrossRefGoogle Scholar
  203. Ueda I (1991) Interfacial effects of anesthetics on membrane fluidity. In: Aloia RC, Curtin CC, Gordon LM (eds) Drug and anesthetic effects on membrane structure and function. Wiley Liss, New York, pp 15–33Google Scholar
  204. Ulrichsen J, Gustavsson L, Ailing C, Clemmesen L, Hemmingsen R (1991) Acidic phospholipids in synaptosomal plasma membranes during repeated episodes of physical ethanol dependence in the rat. Alcohol Alcohol 26:323–328PubMedGoogle Scholar
  205. Vicini S (1991) Pharmacologic significance of the structural heterogeneity of the GABAa receptor-chloride ion channel complex. Neuropsychopharmacology 4:9–15PubMedGoogle Scholar
  206. Volpi M, Naccache PH, Molski TFP, Shefcyk J, Huang C-K, Marsh ML, Munoz J, Becker EL, Sha’afi RI (1985) Pertussis toxin inhibits fMet-Leu-Phe-but not phorbol ester-stimulated changes in rabbit neutrophils: role of G proteins in excitation response coupling. Proc Natl Acad Sci USA 82:2708–2712PubMedCrossRefGoogle Scholar
  207. Wafford KA, Burnett DM, Leidenheimer NH, Burt DR, Wang JB, Kofuji P, Dunwiddie TV, Harris RA, Sikela JM (1991) Ethanol sensitivity of the GABAA receptor expressed in Xenopus oocytes requires 8 amino acids contained in the γ2L subunit. Neuron 7:27–33PubMedCrossRefGoogle Scholar
  208. Waltman C, Levine MA, McCaul ME, Svikis DS, Wand GS (1993) Enhanced expression of the inhibitory protein Gi2α and decreased activity of adenylyl cyclase in lymphocytes of abstinent alcoholics. Alcohol Clin Exp Res 17:315–320PubMedCrossRefGoogle Scholar
  209. Wand GS, Levine MA (1991) Hormonal tolerance to ethanol is associated with decreased expression of the GTP-binding protein, Gsα, and adenylyl cyclase activity in ethanol-treated LS mice. Alcohol Clin Exp Res 15:705–710PubMedCrossRefGoogle Scholar
  210. Wand GS, Diehl AM, Levine MA, Wolfgang D, Samy S (1993) Chronic ethanol treatment increases expression of inhibitory G-proteins and reduces adenylylcyclase activity in the central nervous system of two lines of ethanol-sensitive mice. J Biol Chem 268:2595–2601PubMedGoogle Scholar
  211. Waring AJ, Rottenberg H, Ohnishi T, Rubin E (1981) Membranes and phospholipids of liver mitochondria from chronic alcoholic rats are resistant to membrane disordering by alcohol. Proc Natl Acad Sci USA 78:2582–2586PubMedCrossRefGoogle Scholar
  212. Wenger JR, Tiffany TM, Bombardier C, Nicholls K, Woods S (1981) Ethanol tolerance in the rat is learned. Science 213:575–577PubMedCrossRefGoogle Scholar
  213. Williams RJ, Kelly E (1993) Chronic ethanol reduces immunologically detectable G qα/11α in NG108–15 cells. J Neurochem 61:1163–1166PubMedCrossRefGoogle Scholar
  214. Williams RJ, Veale MA, Home P, Kelly E (1993) Ethanol differentially regulates guanine nucleotide-binding protein α subunit expression in NG108–15 cells independently of extracellular adenosine. Mol Pharmacol 43:158–166PubMedGoogle Scholar
  215. Whittington MA, Little HJ (1988) Nitrendipine prevents the ethanol withdrawal syndrome, when administered chronically with ethanol prior to withdrawal. Br J Pharmacol 92:385PGoogle Scholar
  216. Wing DR, Harvey DJ, Hughes J, Dunbar PG, McPherson KA, Paton WDM (1982) Effects of chronic ethanol administration on the composition of membrane lipids in the mouse. Biochem Pharmacol 31:3431–3439PubMedCrossRefGoogle Scholar
  217. Wood WG, Schroeder F (1988) Membrane effects of ethanol: bulk lipid versus lipid domains. Life Sci. 43:467–475PubMedCrossRefGoogle Scholar
  218. Wood WG, Schroeder F, Hogy L, Rao AM, Nemecz G (1990) Asymmetric distribution of a fluorescent sterol in synaptic plasma membranes: effects of chronic ethanol consumption. Biochim Biophys Acts 1025:243–264CrossRefGoogle Scholar
  219. Wood WG, Gorka C, Johnson JA, Sun GY, Sun AY, Schroeder F (1991a) Chronic ethanol consumption alters transbilayer distribution of phosphatidylcholine in erythrocytes of Sinclair (S-l) miniature swine. Alcohol 8:395–399PubMedCrossRefGoogle Scholar
  220. Wood WG, Schroeder F, Murali Rao A (1991b) Significance of ethanol-induced changes in membrane lipid domains. Alcohol Alcohol [Suppl 1]:221–225Google Scholar
  221. Wood WG, Rao AM, Igbavboa U, Semotuk M (1993) Cholesterol exchange and lateral cholesterol pools in synaptosomal membranes of pair-fed control and chronic ethanol-treated mice. Alcohol Clin Exp Res 17:345–350PubMedCrossRefGoogle Scholar
  222. Wu D, Lee CH, Rhee SG, Simon MI (1992) Activation of phospholipase C by the a subunits of the Gq and G11 proteins in transfected Cos-7 cells. J Biol Chem 267:1811–1817PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • J. Moring
  • W. J. Shoemaker

There are no affiliations available

Personalised recommendations