Skip to main content

Alcohol-Induced Changes in Neuronal Membranes

  • Chapter
The Pharmacology of Alcohol Abuse

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 114))

Abstract

A large number of effects of acute and chronic ethanol exposure on the lipid and protein components of cell membranes have been documented. These effects vary in magnitude and importance. Whether the primary site of action of ethanol is lipid or protein in nature is still unknown. The purpose of this chapter is twofold: first, to review and evaluate the evidence concerning the site of ethanol action; and second, to review the membrane effects of ethanol and to assess their relative importance in producing the characteristic physiological and behavioral effects of ethanol consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham MH, Lieb WR, Franks NP (1991) Role of hydrogen bonding in general anesthesia. J Pharm Sci 80:719–724

    Article  PubMed  CAS  Google Scholar 

  • Abood LG, Salem N Jr, MacNeil M, Bloom L, Abood ME (1977) Enhancement of opiate binding by various molecular forms of phosphatidylserine and inhibition by other unsaturated lipids. Biochim Biophys Acta 468:51–62

    Article  PubMed  CAS  Google Scholar 

  • Akeson M, Deamer DW (1991) Anesthetics and membranes: a critical review. In: Aloia RC, Curtain CC, Gordon LM (eds) Drug and anesthetic effects on membrane structure and function. Wiley Liss, New York, pp 71–89

    Google Scholar 

  • Alifimoff JK, Firestone LL, Miller KW (1989) Anaesthetic potencies of primary alkanols: implications for the molecular dimensions of the anaesthetic site. Br J Pharmacol 96:9–16

    PubMed  CAS  Google Scholar 

  • Alkana RL, Malcolm RD (1980a) Antagonism of ethanol narcosis in mice by hyperbaric pressures of 4–8 atmospheres. Alcohol Clin Exp Res 4:350–353

    Article  PubMed  CAS  Google Scholar 

  • Alkana RL, Malcolm RD (1980b) The effects of low level hyperbaric treatment on acute ethanol intoxication. Adv Exp Med Biol 126:499–507

    PubMed  CAS  Google Scholar 

  • Alkana RL, Malcolm RD (1981) Low-level hyperbaric ethanol antagonism in mice. Dose and pressure response. Pharmacology 22:199–208

    Article  PubMed  Google Scholar 

  • Alkana RL, Malcolm RD (1982) Hyperbaric ethanol antagonism in mice: studies on oxygen, nitrogen, strain and sex. Psychopharmacology 77:11–16

    Article  PubMed  CAS  Google Scholar 

  • Alkana RL, Boone DC, Finn DA (1985a) Temperature dependence of ethanol depression: linear models in male and female mice. Pharmacol Biochem Behav 23:309–316

    Article  PubMed  CAS  Google Scholar 

  • Alkana RL, Finn DA, Galleisky GG, Syapin PJ, Malcolm RD (1985b) Ethanol withdrawal in mice precipitated and exacerbated by hyperbaric exposure. Science 229:772–774

    Article  PubMed  CAS  Google Scholar 

  • Alkana RL, DeBold JF, Finn DA, Babbini M, Syapin PJ (1991) Ethanol-induced depression of aggression in mice antagonized by hyperbaric exposure. Pharmacol Biochem Behav 38:639–644

    Article  PubMed  CAS  Google Scholar 

  • Allan AM, Harris RA (1986) Gamma-aminobutyric acid and alcohol actions: neurochemical studies of long sleep and short sleep mice. Life Sci 39:2005–2015

    Article  PubMed  CAS  Google Scholar 

  • Allan AM, Harris RA (1987) Acute and chronic ethanol treatments alter GAB A receptor-operated chloride channels. Pharmacol Biochem Behav 27:665–670

    Article  PubMed  CAS  Google Scholar 

  • Alling C, Liljequist S, Engel J (1982) The effect of chronic ethanol administration on lipids and fatty acids in subcellular fractions of rat brain. Med Biol 60:149–154

    PubMed  CAS  Google Scholar 

  • Alling C, Gustavsson L, Änggård E (1983) An abnormal phospholipid in rat organs after ethanol treatment. FEBS Lett 152:24–28

    Article  PubMed  CAS  Google Scholar 

  • Alling C, Becker W, Jones AW, Änggård E (1984) Effects of chronic ethanol treatment on lipid composition and prostaglandins in rats fed essential fatty acid deficient diets. Alcohol Clin Exp Res 8:238–242

    Article  PubMed  CAS  Google Scholar 

  • Alling C, Gustavsson L, Månsson J-E, Benthin G, Änggård E (1984) Phosphatidylethanol formation in rat organs after ethanol treatment. Biochim Biophys Acta 793:119–122

    PubMed  CAS  Google Scholar 

  • Alling C, Jonsson G, Gustavsson L, Jensen L, Simonsson P (1986) Anionic glycerophospholipids in platelets from alcoholics. Drug Alcohol Depend 16:309–320

    Article  PubMed  CAS  Google Scholar 

  • Asayoka Y (1989) Distinct effects of phosphatidylethanol on three types of rat brain protein kinase C. Kobe J Med Sci 35:229–237

    Google Scholar 

  • Avdulov NA, Wood WG, Harris RA (1994) Effects of ethanol on structural parameters of rat brain membranes: relationship to genetic differences in ethanol sensitivity. Alcohol Clin Exp Res 18:53–59

    Article  PubMed  CAS  Google Scholar 

  • Babu PP, Nagaraju N, Vemuri MC (1990) Differences in the plasma membrane proteins of chronic alcoholic rat brain. Membr Biochem 9:227–237

    Article  PubMed  CAS  Google Scholar 

  • Baum F (1901) Zur Theorie der Alkoholnarkose. Der Einfluss wechselnder Temperatur auf Wirkungsstärke und Theilungscoefficient der Narcotica. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol 46:338–346

    Article  Google Scholar 

  • Besman MJ, Yanagibashi K, Lee TD, Kawamura M, Hall P, Shively JE (1989) Identification of des-(gly-ile)-endozepine as an effector of corticotropin-dependent adrenal steroidogenesis: Stimulation of cholesterol delivery is mediated by the peripheral benzodiazepine receptor. Proc Natl Acad Sei USA 86:4897–4901

    Article  CAS  Google Scholar 

  • Blank JL, Brattain KA, Exton JH (1992) Activation of cytosolic phosphoinositide phospholipase C by G-protein ßγ subunits. J Biol Chem 267:23069–23075

    PubMed  CAS  Google Scholar 

  • Blumenthal RS, Flinn IW, Proske O, Jackson DG, Tena RG, Mitchell MC, Feldman AM (1991) Effects of chronic ethanol exposure on cardiac receptor-adenylyl cyclase coupling: studies in cultured embryonic chick myocytes and ethanol fed rats. Alcohol Clin Exp Res 15:1077–1083

    Article  PubMed  CAS  Google Scholar 

  • Bora PS, Lange LG (1993) Molecular mechanism of ethanol metabolism by human brain to fatty acid ethyl esters. Alcohol Clin Exp Res 17:28–30

    Article  PubMed  CAS  Google Scholar 

  • Brennan CH, Littleton JM (1990) Second messenger systems involved in genetic regulation of Ca2+ channels in adrenal chromaffin cells. Neuropharmacology 29:689–693

    Article  PubMed  CAS  Google Scholar 

  • Brennan CH, Littleton JM (1991) Chronic exposure to anxiolytic drugs, working by different mechanisms causes up-regulation of dihydropyridine binding sites on cultured bovine adrenal chromaffin cells. Neuropharmacology 30:199–203

    Article  PubMed  CAS  Google Scholar 

  • Buck KJ, Allan AM, Harris RA (1989) Fluidization of brain membranes by A2C does not produce anesthesia and does not augment muscimol-stimulated 36Cl--flux. Eur J Pharmacol 160:359–367

    Article  PubMed  CAS  Google Scholar 

  • Buck KJ, Hahner L, Sikela J, Harris R (1991) Chronic ethanol treatment alters brain levels of y-aminobutyric acidA receptor subunit mRNAs: relationship to genetic differences in ethanol withdrawal seizure severity. J Neurochem 57:1452–1455

    Article  PubMed  CAS  Google Scholar 

  • Cattel MK (1936) The physiological effects of pressure. Biol Rev 11:441–476

    Article  Google Scholar 

  • Charness ME, Querimet LA, Henteleff M (1988) Ethanol differentially regulates G proteins in neural cells. Biochem Biophys Res Commun 155:138–143

    Article  PubMed  CAS  Google Scholar 

  • Chin JH, Goldstein DB (1977) Drug tolerance in biomembranes: a spin label study of the effects of ethanol. Science 196:684–685

    Article  PubMed  CAS  Google Scholar 

  • Chin JH, Parsons LM, Goldstein DB (1978) Increased cholesterol content of erythrocyte and brain membranes in ethanol-tolerant mice. Biochim Biophys Acta 513:358–363

    Article  PubMed  CAS  Google Scholar 

  • Chiou J-S, Kuo C-C, Lin SH, Kamaya H, Ueda I (1991) Interfacial dehydration by alcohols: hydrogen bonding of alcohols to phospholipids. Alcohol 8:143–150

    Article  PubMed  CAS  Google Scholar 

  • Crabbe JC (1983) Sensitivity of ethanol in inbred mice: genotypic correlations among several behavioral responses. Behav Neurosci 97:280–289

    Article  PubMed  CAS  Google Scholar 

  • Crews FT, Camacho A, Phillips I, Tjeenk Willink EC, Calderini G, Hirata FL, Axelrod J, McGivney A, Siraganian R (1991) Effects of membrane fluidity on mast cell and nerve cell function. In: Horrocks LA, Kanfer JN, Porcellati G (eds) Phospholipids in the nervous system, vol 1: metabolism. Raven, New York, pp 237–245

    Google Scholar 

  • Crews FT, Majchrowicz ER, Meeks R (1983) Changes in cortical synaptosomal plasma membrane fluidity and composition in ethanol-dependent rats. Psychopharm 81:208–213

    Article  CAS  Google Scholar 

  • Daniell LC, Leslie SW (1986) Inhibition of fast phase calcium uptake and endogenous norepinephrine release in rat brain region synaptosomes by ethanol. Brain Res 377:18–28

    Article  PubMed  CAS  Google Scholar 

  • Daniell LC, Harris RA (1989) Ethanol and inositol 1,4,5-triphosphate release calcium from separate stores of brain microsomes. J Pharmacol Exp Ther 250:875–881

    PubMed  CAS  Google Scholar 

  • Daniell LC, Barr EM, Leslie SW (1983) 45Ca2+ uptake into rat whole brain synaptosomes unaltered by dihydropyridine calcium antagonists. J Neurochem 41:1455–1459

    Article  PubMed  CAS  Google Scholar 

  • Daniell LC, Brass EP, Harris RA (1987) Effect of ethanol on intracellular ionized calcium concentrations in synaptosomes and hepatocytes. Mol Pharmacol 32: 831–837

    PubMed  CAS  Google Scholar 

  • Davidson M, Wilce P, Shanley B (1988) Ethanol increases synaptosomal free calcium concentration. Neurosci Lett 90:165–169

    Article  Google Scholar 

  • Davidson M, Wilce P, Shanley B (1990) Ethanol and synaptosomal calcium homeostasis. Biochem Pharmacol 39:1283–1288

    Article  PubMed  CAS  Google Scholar 

  • Diamond I, Wrubel B, Estrin W, Gordon A (1987) Basal and adenosine receptor-stimulated levels of cAMP are reduced in lymphocytes from alcoholic patients. Proc Natl Acad Sci USA 84:1413–1416

    Article  PubMed  CAS  Google Scholar 

  • Diamond I, Nagy L, Mochly-Rosen D, Gordon A (1991) The role of adenosine and adenosine transport in ethanol-induced cellular tolerance and dependence. Possible biologic and genetic markers of alcoholism. Ann NY Acad Sci 625: 473–487

    Article  PubMed  CAS  Google Scholar 

  • Dolin SJ, Little HJ (1989) Are changes in neuronal calcium channels involved in ethanol tolerance? J Pharmacol Exp Ther 250:985–991

    PubMed  CAS  Google Scholar 

  • Dolin SJ, Little HJ (1991) Augmentation by calcium channel antagonists of general anaesthetic potency in mice. Br J Pharmacol 88:909–914

    Google Scholar 

  • Dolin SJ, Little HJ, Hudspith M, Pagonis C, Littleton JM (1986) Increased dihydropyridine calcium channels in rat brain may underlie ethanol physical dependence. Neuropharmacology 26:270–275

    Google Scholar 

  • East JM, Jones WT, Simmonds AC, Lee AG (1984) Membrane fluidity is not an important physiological regulator of the (Ca2+-Mg2+)-dependent ATPase of sarcoplasmic reticulum. J Biol Chem 259:8070–8071

    PubMed  CAS  Google Scholar 

  • Ferguson J (1939) The use of chemical potentials as indices of toxicity. Proc R Soc B 127:387–404

    Article  CAS  Google Scholar 

  • Finn DA, Bejanian M, Jones BL, McGivern FR, Syapin PJ, Crabbe JC, Alkana RL (1990) Body temperature differentially affects ethanol sensitivity in both inbred strains and selected lines of mice. J Pharmacol Exp Ther 253:1229–1235

    PubMed  CAS  Google Scholar 

  • Finn DA, Boone DC, Alkana RL (1986) Temperature dependence of ethanol depression in rats. Psychopharmacology 90:185–189

    Article  PubMed  CAS  Google Scholar 

  • Floreani M, Bonetti AC, Carpenedo F (1981) Increase of Na+/K+ ATPase activity in intact rat brain synaptosomes after their interaction with phosphatidylserine vesicles. Biochem Biophys Res Commun 101:1337–1344

    Article  PubMed  CAS  Google Scholar 

  • Floreani M, Carpenedo F (1987) Phosphatidylserine vesicles increase rat brain synaptosomal adenylyl cyclase activity. Biochem Biophys Res Commun 145:631–636

    Article  PubMed  CAS  Google Scholar 

  • Foster AC, Fagg GE, Harris EW, Cotman CW (1982) Regulation of glutamate receptors: possible role of phosphatidylserine. Brain Res 242:374–377

    Article  PubMed  CAS  Google Scholar 

  • Franks NP, Lieb WR (1981) Is membrane expansion relevant to anesthesia? Nature 292:248–251

    Article  PubMed  CAS  Google Scholar 

  • Franks NP, Lieb WR (1982) Molecular mechanisms of general anesthesia. Nature 300:487–493

    Article  PubMed  CAS  Google Scholar 

  • Franks NP, Lieb WR (1984) Do general anesthetics act by competitive binding to specific receptors? Nature 310:599–601

    Article  PubMed  CAS  Google Scholar 

  • Franks NP, Lieb WR (1985) Mapping of general anesthetic target sites provides a molecular basis for cutoff effects. Nature 316:349–351

    Article  PubMed  CAS  Google Scholar 

  • Franks NP, Lieb WR (1986) Partitioning of long-chain alcohols into lipid bilayers: implications for mechanisms of general anesthesia. Proc Natl Acad Sci USA 83:5116–5120

    Article  PubMed  CAS  Google Scholar 

  • Franks NP, Lieb WR (1988) Volatile anesthetics activate a novel neuronal K+ current. Nature 333:662–664

    Article  PubMed  CAS  Google Scholar 

  • Franks NP, Lieb WR (1990) Mechanisms of general anesthesia. Environ Health Perspect 87:199–205

    Article  PubMed  CAS  Google Scholar 

  • Franks NP, Lieb WR (1991) Stereospecific effects of inhalational general anesthetic optical isomers on nerve ion channels. Science 254:427–430

    Article  PubMed  CAS  Google Scholar 

  • Freissmuth P, Casey J, Gilman AG (1989) G proteins control diverse pathways of transmembrane signaling. FASEB J 3:2125–2131

    PubMed  CAS  Google Scholar 

  • Gandhi CR, Ross DH (1989) Influence of ethanol on calcium, inositol phospholipids and intracellular signalling mechanisms. Experientia 45:407–413

    Article  PubMed  CAS  Google Scholar 

  • Garrett KM, Ross DH (1983) Effects of in vivo ethanol administration of Ca2+/Mg2+ ATPase and ATP-dependent Ca2+ uptake activity in synaptosomal membranes. Neurochem Res 8:1013–1028

    Article  PubMed  CAS  Google Scholar 

  • Goldstein DB, Chin JH, Lyon RC (1982) Ethanol disordering of spin-labeled mouse brain membranes: correlation with genetically determined ethanol sensitivity of mice. Proc Natl Acad Sci USA 799:4231–4233

    Article  Google Scholar 

  • Gordon ER, Rochman J, Arai M, Lieber CS (1982) Lack of correlation between hepatic mitochondrial membrane structure and functions in ethanol-fed rats. Science 216:1319–1321

    Article  PubMed  CAS  Google Scholar 

  • Grant KA, Valverius P, Hudspith M, Tabakoff B (1990) Ethanol withdrawal seizures and the NMDA receptor complex. Eur J Pharmacol 176:289–296

    Article  PubMed  CAS  Google Scholar 

  • Greenberg DA, Cooper EC, Gordon A, Diamond I (1984) Ethanol and the gammaaminobutyric acid-benzodiazepine receptor complex. J Neurochem 42:1062–1068

    Article  PubMed  CAS  Google Scholar 

  • Grieve SJ, Littleton JM (1979) Ambient temperature and the development of functional tolerance to ethanol by mice. J Pharm Pharmacol 31:707–708

    Article  PubMed  CAS  Google Scholar 

  • Guidotti A, Forchetti CM, Corda MG, Konkel D, Bennett CD, Costa C (1983) Isolation, characterization, and purification to homogeneity of an endogenous polypeptide with agonistic action on benzodiazepine receptors. Proc Natl Acad Sci USA 80:3531–3535

    Article  PubMed  CAS  Google Scholar 

  • Gustavsson L (1990) Brain lipid changes after ethanol exposure. Up J Med Sci Suppl 48:245–266

    CAS  Google Scholar 

  • Gustavsson L, Moehren G, Hoek JB (1991) Phosphatidylethanol formation in rat hepatocytes. Ann NY Acad Sci 625:438–440

    Article  PubMed  CAS  Google Scholar 

  • Halsey MJ, Wardley-Smith B (1975) Pressure reversal of narcosis produced by anesthetics, narcotics and tranquilizers. Nature 257:811–813

    Article  PubMed  CAS  Google Scholar 

  • Halsey MJ, Wardley-Smith B, Green CJ (1978) Pressure reversal of general anaesthesia - a multi-site expansion hypothesis. Br J Anaesth 50:1091–1097

    Article  PubMed  CAS  Google Scholar 

  • Harris RA, Bruno P (1985) Membrane disordering by anesthetic drugs: relationship to synaptosomal sodium and calcium fluxes. J Neurochem 44:1274–1281

    Article  PubMed  CAS  Google Scholar 

  • Harris RA, Hood WF (1980) Inhibition of synaptosomal calcium uptake by ethanol. J Pharmacol Exp Ther 213:562–568

    PubMed  CAS  Google Scholar 

  • Harris RA, Schroeder F (1981) Ethanol and the physical properties of brain membranes. Fluorescence studies. Mol Pharmacol 20:128–137

    PubMed  CAS  Google Scholar 

  • Harris RA, Baxter DM, Mitchell MA, Hitzemann RJ (1984) Physical properties and lipid composition of brain membranes from ethanol tolerant-dependent mice. Mol Pharmacol 25:401–409

    PubMed  CAS  Google Scholar 

  • Herbette L, Napolitano CA, Messineo FC, Katz AM (1985) Interaction of amphiphilic molecules with biological membranes. A model for nonspecific and specific drug effects with membranes. Adv Myocardiol 5:333–346

    PubMed  CAS  Google Scholar 

  • Herbette LG, Chester DW, Rhodes DG (1986) Structural analysis of drug molecules in biological membranes. Biophys J 49:91–94

    Article  PubMed  CAS  Google Scholar 

  • Hill MW, Bangham AD (1975) General depressant drug dependency: a biophysical hypothesis. Adv Exp Med Biol 59:1–9

    PubMed  CAS  Google Scholar 

  • Hitzemann RJ, Schueler HE, Graham-Brittain C, Kreishman GP (1986) Ethanol-induced changes in neuronal membrane order. Biochim Biophys Acta 859:189–197

    Article  PubMed  CAS  Google Scholar 

  • Hoffman PL, Tabakoff B (1990) Ethanol and guanine nucleotide binding proteins: a selective interaction. FASEB J 4:2612–2622

    PubMed  CAS  Google Scholar 

  • Hubbell WL, Metcalfe JC, Metcalfe SM, McConnell HM (1970) The interaction of small molecules with spin-labelled erythrocyte membranes. Biochim Biophys Acta 219:415–427

    Article  PubMed  CAS  Google Scholar 

  • Huidobro-Toro JP, Bleck V, Allan AM, Harris RA (1987) Neurochemical actions of anesthetic drugs on the y-aminobutyric acid receptor-chloride channel complex. J Pharmacol Exp Ther 242:963–969

    PubMed  CAS  Google Scholar 

  • Hungund BL, Goldstein DB, Villegas F, Cooper TB (1988) Formation of fatty acid ethyl esters during chronic ethanol treatment in mice. Biochem Pharmacol 37:3001–3004

    Article  PubMed  CAS  Google Scholar 

  • Im WB, Blakeman DP, Davis JP, Ayer DE (1990) Studies on the mechanism of interactions between anesthetic steroids and y-aminobutyric acidA receptors. Mol Pharmacol 37:429–434

    PubMed  CAS  Google Scholar 

  • Israel Y (1970) Cellular effects of alcohol: a review. Q J Stud Alcohol 31:293–316

    PubMed  CAS  Google Scholar 

  • Israel Y, Kalant H, Laufer I (1965) Effect of ethanol on electrolyte transport and electrogenesis in animal tissues. J Cell Comp Physiol 65:127–132

    Article  Google Scholar 

  • Johnson FH, Brown ES, Marsland DA (1942) Pressure reversal of the action of certain narcotics. J Cell Comp Physiol 20:269–276

    Article  CAS  Google Scholar 

  • Johnson FH, Flagler EA (1950) Hydrostatic pressure reversal of narcosis in tadpoles. Science 112:91–92

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi A, Kozawa O, Kaibuchi K, Katada T, Ui M, Takai Y (1993) Direct evidence for involvement of a guanine nucleotide-binding protein chemotactic peptide-stimulated formation of inositol biphosphate and trisphosphate in differentiated human leukemic (HL-60) cells. J Biol Chem 261:11558–11562

    Google Scholar 

  • Knapp RJ, Malatynska E, Yamamura HI (1990) From binding studies to the molecular biology of GAB A receptors. Neurochem Res 15:105–112

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Kanfer JN (1987) Phosphatidylethanol formation via transphosphatidylation by rat brain synaptosomal phospholipase D. J Neurochem 48:1597–1603

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Storrie B, Simons K, Dotti CG (1992) A functional barrier to movement of lipids in polarized neurons. Nature 359:647–650

    Article  PubMed  CAS  Google Scholar 

  • Kreishman GP, Graham-Brittain C, Hitzemann RJ (1985) Determination of ethanol partition coefficients to the interior and the surface of dipalmityl-phosphatidylcholine liposomes using deuterium nuclear magnetic resonance spectroscopy. Biochem Biophys Res Commun 130:301–301

    Article  PubMed  CAS  Google Scholar 

  • Lange LG (1991) Mechanism of fatty acid ethyl ester formation and biological significance. Ann NY Acad Sci 625:802–805

    Article  PubMed  CAS  Google Scholar 

  • Laposata E, Lange LG (1986) Presence of non-oxidative ethanol metabolism in human organs commonly damaged by ethanol abuse. Science 231:497–499

    Article  PubMed  CAS  Google Scholar 

  • Lee AG (1976) Model for action of local anesthetics. Nature 262:545-548

    Article  PubMed  CAS  Google Scholar 

  • Lee AG (1988) Annular lipids and the activity of the calcium-dependent ATPase. In: Aloia RA, Curtain CC, Gordon LM (eds) Lipid domains and the relationship to membrane function. Alan R. Liss, Inc., New York, pp 111–139

    Google Scholar 

  • Lee AG (1991) Lipids and their effects on membrane proteins: evidence against a role for fluidity. Prog Lipid Res 30:323–348

    Article  PubMed  CAS  Google Scholar 

  • Lee CH, Park D, Wu D, Rhee SG, Simon MI (1992) Members of the Gq subunit gene family activate phospholipase C β isozymes. J Biol Chem 2267:16044–16047

    Google Scholar 

  • Lee Y-C, Taraschi TF, James N (1993) Support for the shape concept of lipid structure based on a headgroup volume approach. Biophys J 65:1429–1432

    Article  PubMed  CAS  Google Scholar 

  • Leslie SW, Barr E, Chandler LJ (1983a) Comparison of voltage-dependent 45Ca2+ uptake rates by synaptosomes isolated from rat brain regions. J Neurochem 41:1602–1605

    Article  PubMed  CAS  Google Scholar 

  • Leslie SW, Barr E, Chandler J, Farrar RP (1983b) Inhibition of fast-and slow-phase depolarization dependent synaptosomal calcium uptake by ethanol. J Pharmacol Exp Ther 225:571–575

    PubMed  CAS  Google Scholar 

  • Leslie SW, Brown LM, Dildy JE, Sims JS (1990) Ethanol and neuronal calcium channels. Alcohol 7:233–236

    Article  PubMed  CAS  Google Scholar 

  • Lever MJ, Miller KW, Paton WD, Smith EB (1971) Pressure reversal of anesthesia. Nature 231:368–371

    Article  PubMed  CAS  Google Scholar 

  • Levitzki A (1990) Dual control of adenylate cyclase. In: Houslay MD, Milligan G (eds) G-proteins as mediators of cellular signaling processes. John Wiley and Sons, New York, pp 1–14

    Google Scholar 

  • Li C, Peoples RW, Weight FF (1993) Alcohols inhibit ATP-activated ion current by a direct interaction with the channel protein. Society for Neuroscience Abstracts 19:283

    Google Scholar 

  • Lipnick RL (1989) Hans Horst Meyer and the lipoid theory of narcosis. Trends Pharmacol Sci 10:265–269

    Article  PubMed  CAS  Google Scholar 

  • Little HJ, Dolin LH, Halsey MJ (1986) Calcium channel antagonists decrease the ethanol withdrawal syndrome. Life Sci 39:2059–2065

    Article  PubMed  CAS  Google Scholar 

  • Littleton JM, John G (1977) Synaptosomal membrane lipids of mice during continuous exposure to ethanol. J Pharm Pharmacol 29:579–580

    Article  PubMed  CAS  Google Scholar 

  • Littleton JM, Brennan C, Bouchenafa O (1991) The role of calcium flux in the central nervous system actions of ethanol. Ann NY Acad Sci 625:388–394

    Article  PubMed  CAS  Google Scholar 

  • Littleton JM, John GR, Grieve SJ (1979) Alterations in phospholipid composition in ethanol tolerance and dependence. Alcohol Clin Exp Res 3:50–56

    Article  PubMed  CAS  Google Scholar 

  • Lüddens H, Wisden W (1991) Function and pharmacology of multiple GABAA receptor subunits. Trends Pharmacol Sci 12:49–51

    Article  PubMed  Google Scholar 

  • Lundqvist C, Rodriguez FD, Simonsson P, Ailing C, Gustavsson L (1993) Phosphatidylethanol affects inositol 1,4,5-triphosphate levels in NG108–15 neuroblastoma x glioma hybrid cells. J Neurochem 60:738–744

    Article  PubMed  CAS  Google Scholar 

  • Luthin GR, Tabakoff B (1984) Activation of adenylyl cyclase by alcohols requires the nucleotide-binding protein. J Pharmacol Exp Ther 288:579–587

    Google Scholar 

  • Lynch MA, Littleton JM (1983) Possible association of alcohol tolerance with increased synaptic Ca2+ sensitivity. Nature 303:175–176

    Article  PubMed  CAS  Google Scholar 

  • Lyon RC, McComb JA, Schreurs J, Goldstein DB (1981) A relationship between alcohol intoxication and the disordering of brain membranes by a series of short-chain alcohols. J Pharmacol Exp Ther 218:669–675

    PubMed  CAS  Google Scholar 

  • Machu T, Woodward JJ, Leslie SW (1989) Ethanol and inositol 1,4,5-trisphosphate mobilize calcium from rat brain microsomes. Alcohol 6:431–436

    Article  PubMed  CAS  Google Scholar 

  • Malcolm R, Alkana RL (1982) Hyperbaric ethanol antagonism: role of temperature, blood and brain ethanol concentrations. Pharmacol Biochem Behav 16:341–346

    Article  PubMed  CAS  Google Scholar 

  • Manji HK (1992) G-protein: implications for psychiatry. Am J Psychiatry 149:749–760

    Google Scholar 

  • McCreery MJ, Hunt WA (1978) Physico-chemical correlates of alcohol intoxication. Neuropharmacology 17:451–461

    Article  PubMed  CAS  Google Scholar 

  • McNamee MG, Fong TM (1988) Effects of membrane lipids and fluidity on acetylcholine receptor function. In: Aloia RC, Curtain CC, Gordon LM (eds) Lipid domains and the relationship to membrane function. Liss, New York, pp 43–62

    Google Scholar 

  • Messing RO, Carpenter CI, Diamond I, Greenberg DA (1986) Ethanol regulates calcium channels in clonal neural cells. Proc Natl Acad Sci USA 83:6213–6215

    Article  PubMed  CAS  Google Scholar 

  • Messing RO, Petersen PJ, Henrich CJ (1991) Chronic ethanol exposure increases levels of protein kinase C δ and ε and protein kinase C-mediated phosphorylation in cultured neural cells. J Biol Chem 266:23428–23432

    PubMed  CAS  Google Scholar 

  • Metcalfe JC, Seeman P, Burgen ASV (1968) The proton relaxation of benzyl alcohol in erythrocyte membranes. Mol Pharmacol 4:87–95

    PubMed  CAS  Google Scholar 

  • Meyer H (1899) Zur Theorie der Alkoholnarkose. Welche Eigenschaft der Anästhetica bedingt ihre narkotische Wirkung? Naunyn Schmiedebergs Arch Exp Pathol Pharmakol 42:109–118

    Article  Google Scholar 

  • Meyer H (1901) Zur Theorie der Alkoholnarkose. 3. Mittheilung: Der Einfluss wechselnder Temperatur auf Wirkungsstärke und Theilungscoefficient der Narcotica. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol 46:338–346 (see also corrections, ibid. p 431)

    Article  Google Scholar 

  • Meyer KH (1937) Contributions to the theory of narcosis. Trans Faraday Soc 33:1062–1068

    Article  CAS  Google Scholar 

  • Mhatre MC, Ticku MK (1992) Chronic ethanol administration alters y-aminobutyric acidA receptor gene expression. Mol Pharmacol 42:415–422

    PubMed  CAS  Google Scholar 

  • Mihic SJ, Wu PH, Kalant H (1991) Potentiation of y-aminobutyric acid-mediated chloride flux by pentobarbital and diazepam but not ethanol. J Neurochem 58:745–751

    Article  Google Scholar 

  • Miles MF, Barhite S, Sganga M, Elliott M (1993) Phosducin-like protein: an ethanol-responsive potential modulator of guanine nucleotide-binding protein function. Proc Natl Acad Sci USA 90:10831–10835

    Article  PubMed  CAS  Google Scholar 

  • Miles MF, Diaz JE, DeGuzman VS (1991) Mechanisms of neuronal adaptation to ethanol. J Biol Chem 266:2409–2414

    PubMed  CAS  Google Scholar 

  • Miller KW (1985) The nature of the site of general anesthesia. Int Rev Neurobiol 27:1–61

    Article  PubMed  CAS  Google Scholar 

  • Miller KW, Paton DM, Smith EB (1973) The pressure reversal of general anesthesia and the critical volume hypothesis. Mol Pharmacol 9:131–143

    PubMed  CAS  Google Scholar 

  • Miller KW, Firestone LL, Alifimoff JK, Streicher P (1989) Nonanesthetic alcohols dissolve in synaptic membranes without perturbing their lipids. Proc Natl Acad Sci USA 86:1084–1087

    Article  PubMed  CAS  Google Scholar 

  • Mochly-Rosen D, Chang F-H, Cheever L, Kim M, Diamond I, Gordon AS (1988) Chronic ethanol causes heterologous desensitization of receptors by reducing αs messenger RNA. Nature 333:848–850

    Article  PubMed  CAS  Google Scholar 

  • Molski TFP, Naccache PH, Marsh ML, Kermode J, Becker EL, Sha’afi RI (1985) Pertussis toxin inhibits the rise in the intracellular concentration of free calcium that is induced by chemotactic factors in rabbit neutrophils: possible role of the “G proteins” in stimulus-response coupling. Biochem Biophys Res Commun 126:1174–1181

    Article  PubMed  Google Scholar 

  • Montpied P, Morrow A, Karanian J, Ginns EI, Martin BM, Paul SM (1991) Prolonged ethanol inhalation decreases y-aminobutyric acidA receptor α subunit mRNAs in the rat cerebral cortex. Mol Pharmacol 39:157–163

    PubMed  CAS  Google Scholar 

  • Moreno FJ, Mills I, Gracia-Sainz JA, Fain JN (1983) Effects of pertussis toxin treatment on the metabolism of rat adipocytes. J Biol Chem 25:10938–10943

    Google Scholar 

  • Moring J, Volpi M (1992) ADP-ribosylation of G-proteins in rat cerebral cortex: effects of acute and chronic ethanol exposure. Alcohol Clin Exp Res 16: 392

    Google Scholar 

  • Moring J, Shoemaker WJ, Skita V, Mason RP, Hayden HC, Salomon RM, Herbette LG (1990) Rat cerebral cortical synaptoneurosomal membranes. Structure and interactions with imidazobenzodiazepine and 1,4-dihydropyridine calcium channel drugs. Biophys J 58:513–531

    Article  PubMed  CAS  Google Scholar 

  • Morrow AL, Suzdak PD, Karanian JW, Paul SM (1988) Chronic ethanol administration alters y-aminobutyric acid, pentobarbital and ethanol-mediated 36Cl- uptake in cerebral cortical synaptoneurosomes. J Pharmacol Exp Ther 246:158–164

    PubMed  CAS  Google Scholar 

  • Moss GWJ, Lieb WR, Franks NP (1991) Anesthetic inhibition of firefly luciferase, a protein model for general anesthesia, does not exhibit pressure reversal. Biophys J 60:1309–1314

    Article  PubMed  CAS  Google Scholar 

  • Mueller GC, Fleming MF, LeMahieu MA, Lybrand CS, Barry KJ (1988) Synthesis of phosphatidylethanol - a potential marker for adult males at risk for alcoholism. Proc Natl Acad Sci USA 85:9778–9782

    Article  PubMed  CAS  Google Scholar 

  • Mullins LJ (1954) Some physical mechanisms in narcosis. Chem Rev 54:289–323

    Article  CAS  Google Scholar 

  • Nagy LE, DeSilva SEF (1992) Ethanol increases receptor-dependent cyclic AMP production in cultured hepatocytes by decreasing Gi-mediated inhibition. Biochem J 286:681–686

    PubMed  CAS  Google Scholar 

  • Nagy LE, Diamond I, Collier K, Lopez L, Ullman B, Gordon AS (1989) Adenosine is required for ethanol-induced heterologous desensitization. Mol Pharmacol 36:744–748

    PubMed  CAS  Google Scholar 

  • Nhamburo PT, Salafsky BP, Tabakoff B, Hoffman PL (1987) Effects of ethanol on ouabain inhibition of mouse brain (Na+, K+) ATPase activity. Biochem Pharmacol 36:2027–2033

    Article  PubMed  CAS  Google Scholar 

  • Olsen RW, Tobin AJ (1990) Molecular biology of GABAa receptors. FASEB J 4:1469–1480

    PubMed  CAS  Google Scholar 

  • Omodeo-Sale F, Lindi C, Palestini P, Masserini M (1991) Role of phosphatidylethanol in membranes. Effects on membrane fluidity, tolerance to ethanol, and activity of membrane-bound enzymes. Biochem 30:2477–2482

    Article  CAS  Google Scholar 

  • Overton E (1896) Über die osmotischen Eigenschaften der Zelle in ihrer Bedeutung für die Toxicologic und Pharmakologie. Z Phys Chem 22:189–209

    Google Scholar 

  • Overton E (1901) Studien über die Narkose, zugleich ein Beitrag zur allgemeinen Physiologie. Gustav Fischer, Jena

    Google Scholar 

  • Pang K-YY, Braswell LM, Chang L, Sommer TJ, Miller KW (1980) The perturbation of lipid bilayers by general anesthetics: a quantitative test of the disordered lipid hypothesis. Mol Pharmacol 18:84–90

    PubMed  CAS  Google Scholar 

  • Panza G, Grebb JA, Sanna E, Wright AG Jr, Handbauer I (1985) Evidence for down-regulation of 3H-nitrendipine recognition sites in mouse brain after long-term treatment with nifedipine or verapamil. Neuropharmacology 24:1113–1117

    Article  PubMed  CAS  Google Scholar 

  • Park D, Jhon D-K, Lee C-W, Lee K-H, Rhee SG (1993) Activation of phospholipase C isozymes by G protein ßy subunits. J Biol Chem 268:4573–4576

    PubMed  CAS  Google Scholar 

  • Pohorecky LA, Rizek AE (1981) Biochemical and behavioral effects of acute ethanol in rats at different environmental temperatures. Psychopharmacol 72: 205–209

    Article  CAS  Google Scholar 

  • Puddey IB, Beilin LJ, Vandongen R (1986) Lack of effect of acute alcohol ingestion of erythrocyte Na+, K+-ATPase activity or passive sodium uptake in vivo in man. J Stud Alcohol 47:489–494

    PubMed  CAS  Google Scholar 

  • Quinlan JJ, Firestone LL (1992) Ligand-dependent effects of ethanol and diethylether at brain benzodiazepine receptors. Pharmacol Biochem Behav 42:787–790

    Article  PubMed  CAS  Google Scholar 

  • Rabe CS, Giri PR, Hoffman PL, Tabakoff B (1990) Effect of ethanol on cyclic AMP levels in intact PC12 cells. Biochem Pharmacol 40:565–571

    Article  PubMed  CAS  Google Scholar 

  • Rabin RA, Molinoff PB (1983) Multiple sites of action of ethanol on adenylyl cyclase. J Pharmacol Exp Ther 227:551–556

    PubMed  CAS  Google Scholar 

  • Rhee SG, Choi KD (1992) Regulation of inositol phospholipid-specific phospholipase C isozymes. J Biol Chem 267:12393–12396

    PubMed  CAS  Google Scholar 

  • Ross DH, Mutchler TM, Grady MM (1979) Calcium and glycoprotein metabolism as correlates for ethanol preference and sensitivity. Alcohol Clin Exp Res 3:64–69

    Article  PubMed  CAS  Google Scholar 

  • Rottenberg H, Bittman R, Li J-L (1992) Resistance to ethanol disordering of membranes from ethanol-fed rats is conferred by all phospholipid classes. Biochim Biophys Acts 1123:282–290

    CAS  Google Scholar 

  • Rottenberg H, Waring A, Rubin E (1981) Tolerance and cross-tolerance in chronic alcoholics: reduced membrane binding of ethanol and other drugs. Science 213:583–585

    Article  PubMed  CAS  Google Scholar 

  • Rowe ES (1985) Thermodynamic reversibility of phase transitions. Specific effects of alcohols on phosphatidylcholines. Biochim Biophys Acta 813:321–330

    Article  PubMed  CAS  Google Scholar 

  • Sagi-Eisenberg R (1989) GTP-binding proteins as possible targets for protein kinase C action. Trend Biochem Sci 14:355–357

    Article  PubMed  CAS  Google Scholar 

  • Saito T, Luthin GR, Lee JM, Hoffman PL, Tabakoff B (1987) Differential effects of ethanol on the striatal and cortical adenylyl cyclase system. Japan J Pharmacol 43:133–141

    Article  CAS  Google Scholar 

  • Salem N Jr, Karanian JW (1988) Polyunsaturated fatty acids and ethanol. Adv Alcohol Subst Abuse 7:183–197

    Article  PubMed  Google Scholar 

  • Salem N Jr, Ward G (1993) The effects of ethanol on polyunsaturated fatty acid composition. In: Ailing C, Sun G (eds) Alcohol, cell membranes and signal transduction in the brain. Plenum Press, New York, pp 33–46

    Chapter  Google Scholar 

  • Schroeder F, Morrison WJ, Gorka C, Wood WG (1988) Transbilayer effects of ethanol on fluidity of brain membrane leaflets. Biochim Biophys Acta 946:85–94

    Article  PubMed  CAS  Google Scholar 

  • Seeman P (1972) The membrane actions of anesthetics and tranquilizers. Pharmacol Rev 24:583–655

    PubMed  CAS  Google Scholar 

  • Seeman P, Roth S (1972) General anesthetics expand cell membranes at surgical concentrations. Biochim Biophys Acta 255:171–177

    Article  PubMed  CAS  Google Scholar 

  • Shoemaker WJ, Moring J, Ganley L, Shaw J, Xu J, Seale E (1992) Chronic ethanol effects on MK-801 binding: age and brain regional differences. Alcohol Clin Exper Res 16:365

    Google Scholar 

  • Sieghart W, Fuchs K, Zezula J, Buchstaller A, Zimprich F, Lassman H (1992) Biochemical, immunological, and pharmacological characterization of GABAA-benzodiazepine receptor subtypes. In: Biggio G, Concas A, Costa E (eds) GABAergic synaptic transmission: molecular, pharmacological, and clinical aspects. Raven, New York, pp 155–162 (Advances in biochemical pharmacology, vol 4)

    Google Scholar 

  • Simon SA, Mcintosh TJ (1984) Interdigitated hydrocarbon chain packing causes the biphasic transition behavior in lipid/alcohol suspensions. Biochim Biophys Acta 773:169–172

    Article  PubMed  CAS  Google Scholar 

  • Simonsson P, Rodriguez FS, Loman N, Ailing C (1991) G proteins coupled to phospholipase C: molecular targets of long-term ethanol exposure. J Neurochem 56:2018–2026

    Article  PubMed  CAS  Google Scholar 

  • Singer SJ, Nicholson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Article  PubMed  CAS  Google Scholar 

  • Skattebøl A, Rabin RA (1987) Effects of ethanol on 45Ca2+ uptake in synaptosomes and in PC12 cells. Biochem Pharmacol 36:2227–2229

    Article  PubMed  Google Scholar 

  • Smith EB, Bowser-Riley F, Daniels S, Dunbar IT, Harrison CB, Paton WDM (1984) Species variation and the mechanism of pressure-anaesthetic interactions. Nature 311:56–57

    Article  PubMed  CAS  Google Scholar 

  • Smith TL, Gerhart MJ (1982) Alterations in brain lipid composition of mice made physically dependent to ethanol. Life Sci 31:1419–1425

    Article  PubMed  CAS  Google Scholar 

  • Smrcka AV, Sternweis PC (1993) Regulation of purified subtypes of phosphatidylinositol-specific phospholipase C β by G protein α and βγ subunits. J Biol Chem 268:9667–9674

    PubMed  CAS  Google Scholar 

  • Squier TC, Bigelow DJ, Thomas DD (1988) Lipid fluidity directly modulates the overall protein rotational mobility of the Ca-ATPase in sarcoplasmic reticulum. J Biol Chem 263:9178–9186

    PubMed  CAS  Google Scholar 

  • Sternweis PC, Smrcka AV (1993) G proteins in signal transduction: the regulation of phospholipase C. In: Marsh J, Good J (eds) The GTPase superfamily. John Wiley & Sons, New York, pp 96–111

    Google Scholar 

  • Stibler H, Beaugé F, Leguicher A, Borg S (1991) Biophysical and biochemical alterations in erythrocyte membranes from chronic alcoholics. Scand J Clin Lab Invest 51:309–319

    Article  PubMed  CAS  Google Scholar 

  • Sun GY, Sun AY (1983) Chronic ethanol administration induced an increase in phosphatidylserine in guinea pig synaptic plasma membranes. Biochem Biophys Res Commun 113:262–268

    Article  PubMed  CAS  Google Scholar 

  • Sun Gy, Huang H-M, Lee D-Z, Sun AY (1984) Increased acidic phospholipids in rat brain membranes after chronic administration. Life Sci 35:2127–2133

    Article  PubMed  CAS  Google Scholar 

  • Suzdak PD, Schwartz RD, Skolnick P, Paul SM (1986) Ethanol stimulates gammaaminobutyric acid receptor-mediated chloride transport in rat brain synaptoneurosomes. Proc Natl Acad Sci USA 83:4071–4075

    Article  PubMed  CAS  Google Scholar 

  • Tabakoff B, Melchior C, Hoffman P (1984) Factors in ethanol tolerance. Science 224:523–524

    Article  PubMed  CAS  Google Scholar 

  • Tabakoff B, Ritzmann RF, Raju TS, Deitrich RA (1980) Characterization of acute and chronic tolerance in mice selected for inherent differences in sensitivity to ethanol. Alcohol Clin Exp Res 4:70–73

    Article  PubMed  CAS  Google Scholar 

  • Tang W-J, Iniguez-Lluhi JA, Mumby S, Gilman AG (1992) Regulation of mammalian adenylyl cyclases by G-proteinα and βγ subunits. Cold Spring Harbor Symposia on Quantitative Biology 52:135–144

    Google Scholar 

  • Taraschi TF, Ellingson JS, Wu A, Zimmerman R, Rubin E (1986) Phosphatidylinositol from ethanol-fed rats confers membrane tolerance to ethanol. Proc Natl Acad Sci USA 83:9398–9402

    Article  PubMed  CAS  Google Scholar 

  • Taraschi TF, Ellingson JS, Wu-Sun A, Zimmerman R, Rubin E (1990) Rats withdrawn from ethanol rapidly re-acquire membrane tolerance after resumption of ethanol feeding. Biochim Biophys Acta 1021:51–55

    Article  PubMed  CAS  Google Scholar 

  • Taussig R, Inguinez-Lluhi JA, Gilman AG (1993) Inhibition of adenylyl cyclase by Gi α Science 261:218–221

    CAS  Google Scholar 

  • Tewari S, Sytinski IA (1985) Alcohol. In: Lajtha A (ed) Alterations of metabolites in the nervous system. Plenum, New York, pp 219–261, (Handbook of neurochemistry, 2nd edn, vol 9)

    Google Scholar 

  • Treistman SN, Moynihan MM, Wolf DF (1987) Influence of alcohol, temperature, and region on the mobility of lipids in neuronal membrane. Biochim Biophys Acta 898:109–120

    Article  PubMed  CAS  Google Scholar 

  • Trudell JR, Hubbell WL, Cohen EN (1973a) Pressure reversal of inhalation anesthetic-induced disorder in spin-labeled phospholipid vesicles. Biochim Biophys Acta 291:328–334

    Article  PubMed  CAS  Google Scholar 

  • Trudell JR, Hubbell WL, Cohen EN, Kendig JJ (1973b) Pressure reversal of anesthesia. Anesthesiology 38:207–211

    Article  PubMed  CAS  Google Scholar 

  • Ueda I (1991) Interfacial effects of anesthetics on membrane fluidity. In: Aloia RC, Curtin CC, Gordon LM (eds) Drug and anesthetic effects on membrane structure and function. Wiley Liss, New York, pp 15–33

    Google Scholar 

  • Ulrichsen J, Gustavsson L, Ailing C, Clemmesen L, Hemmingsen R (1991) Acidic phospholipids in synaptosomal plasma membranes during repeated episodes of physical ethanol dependence in the rat. Alcohol Alcohol 26:323–328

    PubMed  CAS  Google Scholar 

  • Vicini S (1991) Pharmacologic significance of the structural heterogeneity of the GABAa receptor-chloride ion channel complex. Neuropsychopharmacology 4:9–15

    PubMed  CAS  Google Scholar 

  • Volpi M, Naccache PH, Molski TFP, Shefcyk J, Huang C-K, Marsh ML, Munoz J, Becker EL, Sha’afi RI (1985) Pertussis toxin inhibits fMet-Leu-Phe-but not phorbol ester-stimulated changes in rabbit neutrophils: role of G proteins in excitation response coupling. Proc Natl Acad Sci USA 82:2708–2712

    Article  PubMed  CAS  Google Scholar 

  • Wafford KA, Burnett DM, Leidenheimer NH, Burt DR, Wang JB, Kofuji P, Dunwiddie TV, Harris RA, Sikela JM (1991) Ethanol sensitivity of the GABAA receptor expressed in Xenopus oocytes requires 8 amino acids contained in the γ2L subunit. Neuron 7:27–33

    Article  PubMed  CAS  Google Scholar 

  • Waltman C, Levine MA, McCaul ME, Svikis DS, Wand GS (1993) Enhanced expression of the inhibitory protein Gi2α and decreased activity of adenylyl cyclase in lymphocytes of abstinent alcoholics. Alcohol Clin Exp Res 17:315–320

    Article  PubMed  CAS  Google Scholar 

  • Wand GS, Levine MA (1991) Hormonal tolerance to ethanol is associated with decreased expression of the GTP-binding protein, Gsα, and adenylyl cyclase activity in ethanol-treated LS mice. Alcohol Clin Exp Res 15:705–710

    Article  PubMed  CAS  Google Scholar 

  • Wand GS, Diehl AM, Levine MA, Wolfgang D, Samy S (1993) Chronic ethanol treatment increases expression of inhibitory G-proteins and reduces adenylylcyclase activity in the central nervous system of two lines of ethanol-sensitive mice. J Biol Chem 268:2595–2601

    PubMed  CAS  Google Scholar 

  • Waring AJ, Rottenberg H, Ohnishi T, Rubin E (1981) Membranes and phospholipids of liver mitochondria from chronic alcoholic rats are resistant to membrane disordering by alcohol. Proc Natl Acad Sci USA 78:2582–2586

    Article  PubMed  CAS  Google Scholar 

  • Wenger JR, Tiffany TM, Bombardier C, Nicholls K, Woods S (1981) Ethanol tolerance in the rat is learned. Science 213:575–577

    Article  PubMed  CAS  Google Scholar 

  • Williams RJ, Kelly E (1993) Chronic ethanol reduces immunologically detectable G qα/11α in NG108–15 cells. J Neurochem 61:1163–1166

    Article  PubMed  CAS  Google Scholar 

  • Williams RJ, Veale MA, Home P, Kelly E (1993) Ethanol differentially regulates guanine nucleotide-binding protein α subunit expression in NG108–15 cells independently of extracellular adenosine. Mol Pharmacol 43:158–166

    PubMed  CAS  Google Scholar 

  • Whittington MA, Little HJ (1988) Nitrendipine prevents the ethanol withdrawal syndrome, when administered chronically with ethanol prior to withdrawal. Br J Pharmacol 92:385P

    Google Scholar 

  • Wing DR, Harvey DJ, Hughes J, Dunbar PG, McPherson KA, Paton WDM (1982) Effects of chronic ethanol administration on the composition of membrane lipids in the mouse. Biochem Pharmacol 31:3431–3439

    Article  PubMed  CAS  Google Scholar 

  • Wood WG, Schroeder F (1988) Membrane effects of ethanol: bulk lipid versus lipid domains. Life Sci. 43:467–475

    Article  PubMed  CAS  Google Scholar 

  • Wood WG, Schroeder F, Hogy L, Rao AM, Nemecz G (1990) Asymmetric distribution of a fluorescent sterol in synaptic plasma membranes: effects of chronic ethanol consumption. Biochim Biophys Acts 1025:243–264

    Article  CAS  Google Scholar 

  • Wood WG, Gorka C, Johnson JA, Sun GY, Sun AY, Schroeder F (1991a) Chronic ethanol consumption alters transbilayer distribution of phosphatidylcholine in erythrocytes of Sinclair (S-l) miniature swine. Alcohol 8:395–399

    Article  PubMed  CAS  Google Scholar 

  • Wood WG, Schroeder F, Murali Rao A (1991b) Significance of ethanol-induced changes in membrane lipid domains. Alcohol Alcohol [Suppl 1]:221–225

    Google Scholar 

  • Wood WG, Rao AM, Igbavboa U, Semotuk M (1993) Cholesterol exchange and lateral cholesterol pools in synaptosomal membranes of pair-fed control and chronic ethanol-treated mice. Alcohol Clin Exp Res 17:345–350

    Article  PubMed  CAS  Google Scholar 

  • Wu D, Lee CH, Rhee SG, Simon MI (1992) Activation of phospholipase C by the a subunits of the Gq and G11 proteins in transfected Cos-7 cells. J Biol Chem 267:1811–1817

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moring, J., Shoemaker, W.J. (1995). Alcohol-Induced Changes in Neuronal Membranes. In: Kranzler, H.R. (eds) The Pharmacology of Alcohol Abuse. Handbook of Experimental Pharmacology, vol 114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78435-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78435-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78437-8

  • Online ISBN: 978-3-642-78435-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics