Antibody-Enzyme Fusion Proteins and Bispecific Antibodies

  • E. Haber
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 113)

Abstract

The immunoglobulin molecule is the veritable prototype of a multidomain structure. Each of its units possesses a characteristic function, and in many instances antibody domains can be separated from one another and still retain their functions. The 150 kDa intact molecule can be cleaved to produce the 50 kDa antigen-binding fragment (Fab). A still smaller domain that actually participates in antigen binding, the 25 kDa variable region fragment (Fv), can be produced by recombinant DNA methods. For Fv, Fab, or whole antibody, the affinity for a given epitope is the same. The 50 kDa complement-binding fragment (Fc), another independent immunoglobulin unit, retains the ability to bind the first component of complement and the property of transport across the placental barrier.

Keywords

Cysteine Lysine Sarcoma Doxorubicin Disulfide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anthony J, Near R, Wong S-L, Iida E, Ernst E, Wittekind M, Haber E, Ng S-C (1992) Production of stable anti-digoxin Fv in Escherichia coli. Mol Immunol 29:1237–1247PubMedCrossRefGoogle Scholar
  2. Bignami GS, Senter PD, Grothaus PG, Fischer KJ, Humphreys T, Wallace PM (1992) N-(4′-hydroxyphenylacetyl)palytoxin: a palytoxin prodrug that can be activated by a monoclonal antibody-penicillin G amidase conjugate. Cancer Res 52:5759–5764PubMedGoogle Scholar
  3. Bird RE, Hardman KD, Jacobson JW, Johnson S, Kaufman BM, Lee S-M, Lee T, Pope SH, Riordan GS, Whitlow M (1988) Single-chain antigen-binding proteins. Science 242:423–426PubMedCrossRefGoogle Scholar
  4. Bode C, Matsueda GR, Hui KY, Haber E (1985) Antibody-directed urokinase: a specific fibrinolytic agent. Science 229:765–767PubMedCrossRefGoogle Scholar
  5. Bode C, Runge MS, Newell JB, Matsueda GR, Haber E (1987a) Characterization of an antibody-urokinase conjugate: a plasminogen activator targeted to fibrin. J Biol Chem 262:10819–10823PubMedGoogle Scholar
  6. Bode C, Runge MS, Newell JB, Matsueda GR, Haber E (1987b) Thrombolysis by a fibrin-specific antibody Fab′-urokinase conjugate. J Mol Cell Cardiol 19:335–341PubMedCrossRefGoogle Scholar
  7. Bode C, Runge MS, Branscomb EE, Newell JB, Matsueda GR, Haber E (1989) Antibody-directed fibrinolysis: an antibody specific for both fibrin and tissue plasminogen activator. J Biol Chem 264:944–948PubMedGoogle Scholar
  8. Bode C, Runge MS, Schönermark S, Eberle T, Newell JB, Kübler W, Haber E (1990) Conjugation to antifibrin Fab′ enhances fibrinolytic potency of singlechain urokinase plasminogen activator. Circulation 81:1974–1980PubMedCrossRefGoogle Scholar
  9. Bode C, Meinhardt G, Runge MS, Freitag M, Nordt T, Arens M, Newell JB, Kübler W, Haber E (1991) Platelet-targeted fibrinolysis enhances clot lysis and inhibits platelet aggregation. Circulation 84:805–813PubMedGoogle Scholar
  10. Bode C, Runge MS, Haber E (1992) Purifying antibody-plasminogen activator conjugates. Bioconjugate Chem 3:269–272CrossRefGoogle Scholar
  11. Bosslet K, Czech J, Lorenz P, Sedlacek HH, Schuermann M, Seemann G (1992) Molecular and functional characterization of a fusion protein suited for tumour specific prodrug activation. Br J Cancer 65:234–238PubMedCrossRefGoogle Scholar
  12. Branscomb EE, Runge MS, Savard CE, Adams KM, Matsueda GR, Haber E (1990) Bispecific monoclonal antibodies produced by somatic cell fusion increase the potency of tissue plasminogen activator. Thromb Haemost 64:260–266PubMedGoogle Scholar
  13. Carlsson J, Drevin H, Axen R (1978) Protein thiolation and reversible protein-protein conjugation. Biochem J 173:723–737PubMedGoogle Scholar
  14. Casscells W, Lappi DA, Olwin BB, Wai C, Siegman M, Speir EH, Sasse J, Baird A (1992) Elimination of smooth muscle cells in experimental restenosis: targeting of fibroblast growth factor receptors. Proc Natl Acad Sci USA 89:7159–7163PubMedCrossRefGoogle Scholar
  15. Charpie JR, Runge MS, Matsueda GR, Haber E (1990) A bispecific antibody enhances the fibrinolytic potency of single-chain urokinase. Biochemistry 29: 6375–6378CrossRefGoogle Scholar
  16. Chen F, Haber E, Matsueda GR (1992) Availability of the Bβ(15–21) epitope on cross-linked human fibrin and its plasmic degradation products. Thromb Haemost 67:335–340PubMedGoogle Scholar
  17. Chothia C, Novotny J, Bruccoleri R, Karplus M (1985) Domain association in immunoglobulin molecules. The packing of variable domains. J Mol Biol 186:651–663PubMedCrossRefGoogle Scholar
  18. Declerck PJ, Lijnen HR, Verstreken M, Moreau H, Collen D (1990) A monoclonal antibody specific for two-chain urokinase-type plasminogen activator. Application to the study of the mechanism of clot lysis with single-chain urokinase-type plasminogen activator in plasma. Blood 75:1794–1800PubMedGoogle Scholar
  19. Dewerchin M, Lijnen HR, Stassen JM, De Cock F, Quertermous T, Ginsberg MH, Plow FF, Collen D (1991) Effect of chemical conjugation of recombinant singlechain urokinase-type plasminogen activator with monoclonal antiplatelet antibodies on platelet aggregation and on plasma clot lysis in vitro and in vivo. Blood 78:1005–1018PubMedGoogle Scholar
  20. Gething M-J, Adler B, Boose J-A, Gerard RD, Madison EL, McGookey D, Meidell RS, Roman LM, Sambrook J (1988) Variants of human tissue-type plasminogen activator that lack specific structural domains of the heavy chain. EMBO J 7:2731–2740PubMedGoogle Scholar
  21. Gimple LW, Gold HK, Leinbach RC, Coller BS, Werner W, Yasuda T, Johns JA, Ziskind AA, Finkelstein D, Collen D (1989) Correlation between template bleeding times and spontaneous bleeding during treatment of acute myocardial infarction with recombinant tissue-type plasminogen activator. Circulation 80:581–588PubMedCrossRefGoogle Scholar
  22. Glockshuber R, Malia M, Pfitzinger I, Plückthun A (1990) A comparison of strategies to stabilize immunoglobulin Fv-fragments. Biochemistry 39:1362–1367CrossRefGoogle Scholar
  23. Haber E, Quertermous T, Matsueda GR, Runge MS (1989) Innovative approaches to plasminogen activator therapy. Science 243:51–56PubMedCrossRefGoogle Scholar
  24. Harris TJ (1987) Second-generation plasminogen activators. Protein Eng 1:449–458PubMedCrossRefGoogle Scholar
  25. Hayzer DJ, Lubin IM, Runge MS (1991) Conjugation of plasminogen activators and fibrin-specific antibodies to improve thrombolytic therapeutic agents. Bioconjugate Chem 2:301–308CrossRefGoogle Scholar
  26. Hellstrom KE, Senter PD (1991) Activation of prodrugs by targeted enzymes. Eur J Cancer 27:1342–1343PubMedCrossRefGoogle Scholar
  27. Holmberg L, Bladh B, Astedt B (1976) Purification of urokinase by affinity chromatography. Biochim Biophys Acta 445:215–222PubMedGoogle Scholar
  28. Holvoet P, Stassen JM, Hashimoto Y, Spriggs D, Devos P, Collen D (1989) Binding properties of monoclonal antibodies against human fragment D-dimer of cross-linked fibrin to human plasma clots in an in vivo model in rabbits. Thromb Haemost 61:307–313PubMedGoogle Scholar
  29. Holvoet P, Laroche Y, Lijnen HR, Van Cauwenberge R, Demarsin E, Brouwers E, Matthyssens G, Collen D (1991) Characterization of a chimeric plasminogen activator consisting of a single-chain Fv fragment derived from a fibrin fragment D-dimer-specific antibody and a truncated single-chain urokinase. J Biol Chem 266:19717–19724PubMedGoogle Scholar
  30. Hui KY, Haber E, Matsueda GR (1983) Monoclonal antibodies to a synthetic fibrinlike peptide bind to human fibrin but not fibrinogen. Science 222:1129–1132PubMedCrossRefGoogle Scholar
  31. Huston JS, Levinson D, Mudgett-Hunter M, Tai M-S, Novotny J, Margolies MN, Ridge RJ, Bruccoleri RE, Haber E, Crea R, Oppermann H (1988) Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc Natl Acad Sci USA 85:5879–5883PubMedCrossRefGoogle Scholar
  32. Inbar D, Hochman J, Givol D (1972) Localization of antibodycombining sites within the variable portions of heavy and light chains. Proc Natl Acad Sci USA 69:2659–2662PubMedCrossRefGoogle Scholar
  33. Kerr DE, Senter PD, Burnett WV, Hirschberg DL, Hellstrom I, Hellstrom KE (1990) Antibody-penicillin-V-amidase conjugates kill antigen-positive tumor cells when combined with doxorubicin phenoxyacetamide. Cancer Immunol Immunother 31:202–206PubMedCrossRefGoogle Scholar
  34. Korngold L, Pressman D (1954) The localization of antilymphosarcoma antibodies in the Murphy lymphosarcoma of the rat. Cancer Res 14:96–99PubMedGoogle Scholar
  35. Kurokawa T, Iwasa S, Kakinuma A (1989) Enhanced fibrinolysis by a bispecific monoclonal antibody reactive to fibrin and tissue plasminogen activator. Biotechnology 7:1163–1167Google Scholar
  36. Kurokawa T, Iwasa S, Kahinuma A (1990) Enhancement of fibrinolysis by bispecific monoclonal antibodies reactive to fibrin and plasminogen activators. Thromb Res Suppl 10:83–89PubMedCrossRefGoogle Scholar
  37. Love TW, Runge MS, Haber E, Quertermous T (1989) Recombinant antibodies possessing novel effector functions. Methods Enzymol 178:515–527PubMedCrossRefGoogle Scholar
  38. Love TW, Quertermous T, Zavodny PJ, Runge MS, Chou C-C, Mullins D, Huang PL, Schnee JM, Kestin AS, Savard CE, Michelson KD, Matsueda GR, Haber E (1993) High-level expression of antibody-plasminogen activator fusion proteins in hybridoma cells. Thromb Res 69:221–229PubMedCrossRefGoogle Scholar
  39. Milstein C, Cuello AC (1983) Hybrid hybridomas and their use in immunohisto-chemistry. Nature 305:537–540PubMedCrossRefGoogle Scholar
  40. Near RI, Ng SC, Mudgett-Hunter M, Hudson NW, Margolies MN, Seidman JG, Haber E, Jacobson MA (1990) Heavy and light chain contributions to antigen binding in an antidigoxin chain recombinant antibody produced by transfection of cloned anti-digoxin antibody genes. Mol Immunol 27:901–909PubMedCrossRefGoogle Scholar
  41. Neuberger MS, Williams GT, Fox RO (1984) Recombinant antibodies possessing novel effector functions. Nature 312:604–608PubMedCrossRefGoogle Scholar
  42. Novotny J, Haber E (1985) Structural variants of antigen binding: comparison of immunoglobulin VL-VH and Vl-Vl domain dimers. Proc Natl Acad Sci USA 82:4592–4596PubMedCrossRefGoogle Scholar
  43. Peppel K, Crawford D, Beutler B (1991) A tumor necrosis factor (TNF) receptor-IgG heavy chain chimeric protein as a bivalent antagonist of TNF activity. J Exp Med 174:1483–1489PubMedCrossRefGoogle Scholar
  44. Porter RR (1959) The hydrolysis of rabbit γ-globulin and antibodies with crystalline papain. Biochem J 73:119–126PubMedGoogle Scholar
  45. Pressman D, Korngold L (1953) The in vivo localization of anti-Wagner-osteogenic-sarcoma antibodies. Cancer 6:619–623PubMedCrossRefGoogle Scholar
  46. Reed GL III, Matsueda GR, Haber E (1990) Synergistic fibrinolysis: combined effects of plasminogen activators and an antibody that inhibits α 2-antiplasmin. Proc Natl Acad Sci USA 87:1114–1118PubMedCrossRefGoogle Scholar
  47. Riechmann L, Foote J, Winter G (1988) Expression of an antibody Fv fragment in myeloma cells. J Mol Biol 203:825–828PubMedCrossRefGoogle Scholar
  48. Runge MS, Bode C, Matsueda GR, Haber E (1987) Antibody-enhanced thrombolysis: targeting of tissue plasminogen activator in vivo. Proc Natl Acad Sci USA 84:7659–7662PubMedCrossRefGoogle Scholar
  49. Runge MS, Bode C, Matsueda GR, Haber E (1988) Conjugation to an antifibrin monoclonal antibody enhances the fibrinolytic potency of tissue plasminogen activator in vitro. Biochemistry 27:1153–1157PubMedCrossRefGoogle Scholar
  50. Runge MS, Bode C, Savard CE, Matsueda GR, Haber E (1990) Antibody-directed fibrinolysis: a bispecific (Fab′)2 that binds to fibrin and tissue plasminogen activator. Bioconjugate Chem 1:274–277CrossRefGoogle Scholar
  51. Runge MS, Quertermous T, Zavodny PJ, Love TW, Bode C, Freitag M, Shaw S-Y, Huang PL, Chou C-C, Mullins D, Schnee JM, Savard CE, Rothenberg ME, Newell JB, Matsueda GR, Haber E (1991) A recombinant chimeric plasminogen activator with high affinity for fibrin has increased thrombolytic potency in vitro and in vivo. Proc Natl Acad Sci USA 88:10337–10341PubMedCrossRefGoogle Scholar
  52. Sakharov DV, Sinitsyn W, Kratasjuk GA, Popov NV, Domogatsky SP (1988) Two-step targeting of urokinase to plasma clot provides efficient fibrinolysis. Thromb Res 49:481–488PubMedCrossRefGoogle Scholar
  53. Schnee JM, Runge MS, Matsueda GR, Hudson NW, Seidman JG, Haber E, Quertermous T (1987) Construction and expression of a recombinant antibody-targeted plasminogen activator. Proc Natl Acad Sci USA 84:6904–6908PubMedCrossRefGoogle Scholar
  54. Senter PD, Saulnier MG, Schreiber GJ, Hirschberg DL, Brown JP, Hellström I, Hellström KE (1988) Anti-tumor effects of antibody-alkaline phosphatase conjugates in combination with etoposide phosphate. Proc Natl Acad Sci USA 85:4842–4846PubMedCrossRefGoogle Scholar
  55. Senter PD, Schreiber GJ, Hirschberg DL, Ashe SA, Hellström KE, Hellström I (1989) Enhancement of the in vitro and in vivo antitumor activities of phosphorylated mitomycin C and etoposide derivatives by monoclonal antibody-alkaline phosphatase conjugates. Cancer Res 49:5789–5792PubMedGoogle Scholar
  56. Senter PD, Su PC, Katsuragi T, Sakai T, Cosand WL, Hellström I, Hellström KE (1991) Generation of 5-fluorouracil from 5-fluorocytosine by monoclonal antibody-cytosine deaminase conjugates. Bioconjugate Chem 2:447–451CrossRefGoogle Scholar
  57. Skerra A, Plückthun A (1988) Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 240:1038–1041PubMedCrossRefGoogle Scholar
  58. Skerra A, Pfitzinger I, Plückthun A (1991) The functional expression of antibody Fv fragments in Escherichia coli. Improved vectors and a generally applicable purification technique. Biotechnology 9:273–278PubMedCrossRefGoogle Scholar
  59. Solomon B, Raviv O, Leibman E, Fleminger G (1992) Affinity purification of antibodies using immobilized FB domain of protein A. J Chromatogr 597: 257–262PubMedCrossRefGoogle Scholar
  60. Springer CJ, Bagshawe KD, Sharma SK, Searle F, Boden JA, Antoniw P, Burke PJ, Rogers GT, Sherwood RF, Melton RG (1991) Ablation of human choriocarcinoma xenografts in nude mice by antibody-directed enzyme prodrug therapy (ADEPT) with three novel compounds. Eur J Cancer 27:1361–1366PubMedCrossRefGoogle Scholar
  61. Stump DC, Lijnen HR, Collen D (1986) Purification and characterization of a novel low molecular weight form of single-chain urokinase-type plasminogen activator. J Biol Chem 261:17120–17126PubMedGoogle Scholar
  62. Suresh MR, Cuello AC, Milstein C (1986) Bispecific monoclonal antibodies from hybrid hybridomas. Methods Enzymol 121:210–228PubMedCrossRefGoogle Scholar
  63. Svensson HP, Kadow JF, Vrudhula VM, Wallace PM, Senter PD (1992) Monoclonal antibody-beta-lactamase conjugates for the activation of a cephalosporin mustard prodrug. Bioconjugate Chem 3:176–181CrossRefGoogle Scholar
  64. Tai M-S, Mudgett-Hunter M, Levinson D, Wu G-M, Haber E, Oppermann H, Huston JS (1990) A bifunctional fusion protein containing Fc-binding fragment B of staphylococcal protein A amino-terminal to antidigoxin single-chain Fv. Biochemistry 29:8024–8030PubMedCrossRefGoogle Scholar
  65. Till MA, Ghetie V, Gregory T, Patzer EJ, Porter JP, Uhr JW, Capon DJ, Vitetta ES (1988) HIV-infected cells are killed by rCD4-ricin A chain. Science 242: 1166–1168PubMedCrossRefGoogle Scholar
  66. Tonegawa S (1983) Somatic generation of antibody diversity. Nature 302:575–581PubMedCrossRefGoogle Scholar
  67. Traunecker A, Schneider J, Kiefer H, Karjalainen K (1989) Highly efficient neutralization of HIV with recombinant CD4-immunoglobulin molecules. Nature 339:68–70PubMedCrossRefGoogle Scholar
  68. Trauth BC, Klas C, Peters AMJ, Matzku S, Möller P, Falk W, Debatin K-M, Krammer PH (1989) Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 245:301–305PubMedCrossRefGoogle Scholar
  69. Tucker PW, Marcu KB, Newell N, Richards J, Blattner FR (1979) Sequence of the cloned gene for the constant region of murine γ2b immunoglobulin heavy chain. Science 206:1303–1306PubMedCrossRefGoogle Scholar
  70. Vitetta ES, Fulton RJ, May RD, Till M, Uhr JW (1987) Redesigning nature’s poisons to create anti-tumor reagents. Science 238:1098–1104PubMedCrossRefGoogle Scholar
  71. Williams GT, Neuberger MS (1986) Production of antibody-tagged enzymes by myeloma cells: application to DNA polymerase I Klenow fragment. Gene 43:319–324PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • E. Haber

There are no affiliations available

Personalised recommendations