Skip to main content

Humanization of Monoclonal Antibodies

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 113))

Abstract

Antibodies of predefined specificity have many potential uses in human therapy and diagnosis, and hybridoma technology (Koehler and Milstein 1975) has made possible the generation of virtually limitless amounts of such antibodies. Unfortunately, hybridoma proteins are more easily obtained from nonhuman, usually rodent, sources and the use of those antibodies in human subjects will be hindered by the patient’s immune system. The reduction of the immunogenicity in humans of xenogenic antibodies will make those molecules more efficacious reagents and various procedures for “humanizing” antibodies have been developed with this objective in mind.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alber T, Sun DP, Wilson K, Wozniak JA, Matthews BW (1987) Contributions of hydrogen bonds of Thr 157 to the thermodynamic stability of phage T4 lysozyme. Nature 330:41–46

    Article  PubMed  CAS  Google Scholar 

  • Bentley GA, Boulot G, Riottot MM, Poljak RJ (1990) Three-dimensional structure of art idiotope-anti-idiotope complex. Nature 348:254–257

    Article  PubMed  CAS  Google Scholar 

  • Bernstein FC, Koetzle TF, Williams GJB, Meyer EF Jr, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) The Protein Data Bank. A computer-based archival file for macromolecular structures. J Mol Biol 112: 535–542

    Article  PubMed  CAS  Google Scholar 

  • Bhat TN, Bentley GA, Fischmann TO, Boulot G, Poljak RJ (1990) Small rearrangements in structures of Fv and Fab fragments of antibody D1.3 on antigen binding. Nature 347:483–485

    Article  PubMed  CAS  Google Scholar 

  • Chothia C, Lesk AM (1987) Canonical structures for the hypervariable regions of immunoglobulins. J Mol Biol 196:901–917

    Article  PubMed  CAS  Google Scholar 

  • Chothia C, Lesk AM, Tramontano A, Levitt M, Smith-Gill SJ, Air G, Sheriff S, Padlan EA, Davies D, Tulip WR, Colman PM, Spinelli S, Alzari PM, Poljak RJ (1989) Conformations of immunoglobulin hypervariable regions. Nature 342:877–883

    Article  PubMed  CAS  Google Scholar 

  • Co MS, Queen C (1991) Humanized antibodies for therapy. Nature 351:501–502

    Article  PubMed  CAS  Google Scholar 

  • Co MS, Deschamps M, Whitney RJ, Queen C (1991) Humanized antibodies for antiviral therapy. Proc Natl Acad Sci USA 88:2869–2873

    Article  PubMed  CAS  Google Scholar 

  • Colman PM, Laver WG, Varghese JN, Baker AT, Tulloch PA, Air GM, Webster RG (1987) Three-dimensional structure of a complex of antibody with influenza virus neuraminidase. Nature 326:358–363

    Article  PubMed  CAS  Google Scholar 

  • Daugherty BL, DeMartino JA, Law M-F, Kawka DW, Singer II, Mark GE (1991) Polymerase chain reaction facilitates the cloning, CDR-grafting, and rapid expression of a murine monoclonal antibody directed against the CD18 component of leukocyte integrins. Nucleic Acid Res 19:2471–2476

    Article  PubMed  CAS  Google Scholar 

  • Davies DR, Padlan EA (1992) Twisting into shape. Curr Biol 2:254–256

    Article  PubMed  CAS  Google Scholar 

  • DeMartino JA, Daugherty BL, Law M-F, Cuca GC, Alves K, Silberklang M, Mark GE (1991) Rapid humanization and expression of murine monoclonal antibodies. Antib Immunoconj Radiopharm 4:829–835

    CAS  Google Scholar 

  • Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395

    Article  PubMed  CAS  Google Scholar 

  • Edmundson AB, Ely KR, Girling RL, Abola EE, Schiffer M, Westholm FA, Fausch MD, Deutsch HF (1974) Binding of 2,4-dinitrophenyl compounds and other small molecules to a crystalline λ-type Bence-Jones dimer. Biochemistry 13:3816–3827

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich PH, Harfeldt KE, Justice JC, Moustafa ZA, Ostberg L (1987) Rhesus monkey responses to multiple injections of human monoclonal antibodies. Hybridoma 6:151–160

    Article  PubMed  CAS  Google Scholar 

  • Fischmann TO, Bentley GA, Bhat TN, Boulot G, Mariuzza RA, Phillips SEV, Tello D, Poljak RJ (1991) Crystallographic refinement of the three-dimensional structure of the FabD1.3-lysozyme complex at 2.5-A resolution. J Biol Chem 266:12915–12920

    PubMed  CAS  Google Scholar 

  • Foote J, Winter G (1992) Antibody framework residues affecting the conformation of the hypervariable loops. J Mol Biol 224:487–499

    Article  PubMed  CAS  Google Scholar 

  • George DG, Barker WC, Hunt LT (1986) The protein identification resource (PIR). Nucleic Acids Res 14:11–16

    Article  PubMed  CAS  Google Scholar 

  • Hakimi J, Chizzonite R, Luke DR, Familletti PC, Bailon P, Kondas JA, Pilson RS, Lin P, Weber DV, Spence C, Mondini SJ, Tsien W-H, Levin JL, Gallati VH, Korn L, Waldmann TA, Queen C, Benjamin W (1991) Reduced im-munogenicity and improved pharmacokinetics of humanized anti-Tac in cyno-molgus monkeys. J Immunol 147:1352–1359

    PubMed  CAS  Google Scholar 

  • Herron JN, He XM, Ballard DW, Blier PR, Pace PE, Bothwell ALM, Voss EW Jr, Edmundson AB (1991) An autoantibody to single-stranded DNA: comparison of the three-dimensional structures of the unliganded Fab and a deoxynucleotide-Fab complex. Proteins 11:159–175

    Article  PubMed  CAS  Google Scholar 

  • Jones PT, Dear PH, Foote J, Neuberger MS, Winter G (1986) Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321:522–525

    Article  PubMed  CAS  Google Scholar 

  • Jonker M, Schellekens PT, Harpprecht J, Slingerland W (1991) Complications of monoclonal antibody (MAb) therapy: the importance of primate studies. Transplant Proc 23:264–265

    PubMed  CAS  Google Scholar 

  • Kabat EA, Wu TT, Bilofsky H (1977) Unusual distribution of amino acids in complementarity-determining (hypervariable) segments of heavy and light chains of immunoglobulins and their possible roles in specificity of antibody combining sites. J Biol Chem 252:6609–6616

    PubMed  CAS  Google Scholar 

  • Kabat EA, Wu TT, Perry HM, Gottesman KS, Foeller C (1991) Sequences of proteins of immunological interest, 5th edn. US Department of Health and Human Services, Public Health Service, National Institutes of Health (NIH Publ no 91–3242)

    Google Scholar 

  • Kettleborough CA, Saldanha J, Heath VJ, Morrison CJ, Bendig MM (1991) Humanization of a mouse monoclonal antibody by CDR-grafting: the importance of framework residues on loop conformation. Protein Eng 4:773–783

    Article  PubMed  CAS  Google Scholar 

  • Koehler G, Milstein C (1975) Continuous cultures of fused cells secreting antibodies of predefined specificity. Nature 256:495–497

    Article  CAS  Google Scholar 

  • Morrison SL, Oi VT (1988) Genetically engineered antibody molecules. Adv Immunol 44:65–92

    Article  Google Scholar 

  • Nakamaye KL, Eckstein F (1986) Inhibiton of restriction endonuclease Nci I cleavage by phosphorothioate groups and its application to oligonucleotide-directed mutagenesis. Nucleic Acid Res 14:9679–9698

    Article  PubMed  CAS  Google Scholar 

  • Padlan EA (1977) Structural implications of sequence variability in immunoglobulins. Proc Natl Acad Sci USA 74:2551–2555

    Article  PubMed  CAS  Google Scholar 

  • Padlan EA (1990) On the nature of antibody combining sites: unusual structural features that may confer on these sites an enhanced capacity for binding ligands. Proteins 7:112–124

    Article  PubMed  CAS  Google Scholar 

  • Padlan EA (1991) A possible procedure for reducing the immunogenicity of antibody variable domains while preserving their ligand-binding properties. Mol Immunol 28:489–498

    Article  PubMed  CAS  Google Scholar 

  • Padlan EA, Davies DR (1975) Variability of three-dimensional structure in immunoglobulins. Proc Natl Acad Sci USA 72:819–823

    Article  PubMed  CAS  Google Scholar 

  • Padlan EA, Silverton EW, Sheriff S, Cohen GH, Smith-Gill SJ, Davies DR (1989) Structure of an antibody-antigen complex: crystal structure of the HyHEL-10 Fab-lysozyme complex. Proc Natl Acad Sci USA 86:5938–5942

    Article  PubMed  CAS  Google Scholar 

  • Poljak RJ, Amzel LM, Avey HP, Chen BL, Phizackerley RP, Saul F (1973) Three-dimensional structure of the Fab′ fragment of a human immunoglobulin at 2.8-A resolution. Proc Natl Acad Sci USA 70:3305–3310

    Article  PubMed  CAS  Google Scholar 

  • Queen C, Schneider WP, Selick HE, Payne PW, Landolfi NF, Duncan JF, Avdalovic NM, Levitt M, Junghans RP, Waldmann TA (1989) A humanized antibody that binds to the interleukin 2 receptor. Proc Natl Acad Sci USA 86:10029–10033

    Article  PubMed  CAS  Google Scholar 

  • Riechmann L, Clark M, Waldmann H, Winter G (1988) Reshaping human antibodies for therapy. Nature 332:323–327

    Article  PubMed  CAS  Google Scholar 

  • Rini JM, Schulze-Gahmen U, Wilson IA (1992) Structural evidence for induced fit as a mechanism for antibody-antigen recognition. Science 255:959–965

    Article  PubMed  CAS  Google Scholar 

  • Risler JL, Delorme MO, Delacroix H, Henaut A (1988) Amino acid substitutions in structurally related proteins, a pattern recognition approach: determination of a new and efficient scoring matrix. J Mol Biol 204:1019–1029

    Article  PubMed  CAS  Google Scholar 

  • Schiffer M, Girling RL, Ely KR, Edmundson AB (1973) Structure of a λ-type Bence-Jones protein at 3.5-A resolution. Biochemistry 12:4620–4631

    Article  PubMed  CAS  Google Scholar 

  • Schwartz RM, Dayhoff MO (1979) In:Dayhoff MO (ed) Atlas of protein sequence and structure. National Biomedical Research Foundation, Washington DC

    Google Scholar 

  • Sheriff S, Silverton EW, Padlan EA, Cohen GH, Smith-Gill SJ, Finzel BC, Davies DR (1987) Three-dimensional structure of an antibody-antigen complex. Proc Natl Acad Sci USA 84:8075–8079

    Article  PubMed  CAS  Google Scholar 

  • Stanfield RL, Fieser TM, Lerner RA, Wilson IA (1990) Crystal structure of an antibody to a peptide and its complex with peptide antigen at 2.8 A. Science 248:712–719

    Article  PubMed  CAS  Google Scholar 

  • Taylor JW, Ott J, Eckstein F (1985) The rapid generation of oligonucleotide-directed mutations at high frequency using phosphorothioate-modified DNA. Nucleic Acid Res 13:8765–8785

    Article  PubMed  CAS  Google Scholar 

  • Tempest PR, Bremner P, Lambert M, Taylor G, Furze JM, Carr FJ, Harris WJ (1991) Reshaping a human monoclonal antibody to inhibit human respiratory syncytial virus infection in vivo. Biotechnology 9:266–271

    Article  PubMed  CAS  Google Scholar 

  • Tramontano A, Chothia C, Lesk AM (1990) Framework residue 71 is a major determinant of the position and conformation of the second hypervariable region in the VH domains of immunoglobulins. J Mol Biol 215:175–182

    Article  PubMed  CAS  Google Scholar 

  • Tulip WR, Varghese JN, Laver WG, Webster RG, Colman PM (1992) Refined crystal structure of the influenza virus N9 neuraminidase-NC41 Fab complex. J Mol Biol 227:122–148

    Article  PubMed  CAS  Google Scholar 

  • Verhoeyen M, Milstein C, Winter G (1988) Reshaping human antibodies: grafting an antilysozyme activity. Science 239:1534–1536

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mark, G.E., Padlan, E.A. (1994). Humanization of Monoclonal Antibodies. In: Rosenberg, M., Moore, G.P. (eds) The Pharmacology of Monoclonal Antibodies. Handbook of Experimental Pharmacology, vol 113. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78432-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78432-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78434-7

  • Online ISBN: 978-3-642-78432-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics