Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 112))

Abstract

The liver is the most important drug-eliminating organ that is capable of both conjugation and biliary excretion. Much has been reported on the liver’s role as a highly specialized and heterogeneous organ (Novikoff 1959; Miller et al. 1979; de Leeue and Knook 1984; Gooding et al. 1978; Jungerman and Katz 1982), and an accurate physiological description of hepatic drug conjugation and conjugate processing by the liver necessitates consideration of the structure of the liver and its microcirculation (Pang and Stillwell 1983; Goresky a n d Groom 1984; Pang 1990; Pang et al. 1991, 1992). The attendant heterogeneities — in enzymic zonation (Baron et al. 1982; Ullrich et al. 1984; Knapp et al. 1988; Thurman et al. 1987; Pang et al. 1983; Pang and Terrell 1981a), biliary excretion (Gumucio et al. 1978; Boyer et al. 1979), capillary transit times (Goresky 1963; Goresky and Groom 1984), cosubstrate abundance (Asgher et al. 1975; Smith et al. 1979; Murray et al. 1986), intracellular binding (Braakman et al. 1987, 1989; Bass et al. 1989) and transport (Burger et al. 1989; Mcfarlane et al. 1990), together with clearance modifiers, such as organ blood flow, drug and conjugate binding to vascular proteins, transmembrane clearance, and the K max and V max of the saturable eliminatory pathways (for reviews, see Goresky and Groom 1984; Pang a n d Xu 1988; Pang 1990; Pang et al. 1991, 1992; Goresky et al. 1993a,b) — must be viewed as a whole in order to accurately relate the occurrences involved during drug and conjugate processing within the liver.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams JD Jr, Lauterburg BH, Mitchell JR (1983) Plasma glutathione and glutathione disulfide in the rat: regulation and response to oxidative stress. J Pharmacol Exp Ther 227: 749–754

    PubMed  CAS  Google Scholar 

  • Ahmad AB, Bennett PN, Rowland M (1983) Models of hepatic drug clearance: discrimination between the “well-stirred” and “parallel-tube” models. J Pharm Pharmacol 35: 219–224

    PubMed  CAS  Google Scholar 

  • Anundi IM, Kauffman FC, El-Mouelhi M, Thurman RG (1986) Hydrolysis of organic sulfates in periportal and pericentral regions of the liver lobule: studies with 4-methylumbelliferyl sulfate in the perfused rat liver. Mol Pharmacol 29: 599–605

    PubMed  CAS  Google Scholar 

  • Asghar K, Reddy BK, Krishna G (1975) Histochemical localization of glutathione in tissues. J Histochem Cytochem 23: 774–779

    PubMed  CAS  Google Scholar 

  • Aw TY, Ookhtens RC, Kaplowitz N (1986) Kinetics of glutathione efflux from isolated rat hepatocytes. Am J Physiol 250: G236–G243

    PubMed  CAS  Google Scholar 

  • Ballatori N, Clarkson TW (1983) Biliary transport of glutathione and methylmercury. Am J Physiol 244: G435–G441

    PubMed  CAS  Google Scholar 

  • Ballatori N, Jacob R, Boyer JL (1986) Intrabiliary glutathione hydrolysis: a source of glutamate in bile. J Biol Chem 261: 7860–7865

    PubMed  CAS  Google Scholar 

  • Barnhart JR, Clarenburg R (1973) Factors determining the clearance of bilirubin in perfused rat liver. Am J Physiol 225: 497–508

    PubMed  CAS  Google Scholar 

  • Baron J, Redick RA, Guengerich FP (1982) Effect of 3-methyl-cholanthrene, ß-naphthoflavone, and phenobarbital on the 3-methyl-cholanthrene inducible isozyme of cytochrome P-450 within centrilobular, midzonal, and periportal hepatocytes. J Biol Chem 257: 953–957

    PubMed  CAS  Google Scholar 

  • Bass L (1983) Saturation kinetics in hepatic drug removal: a statistical approach to functional heterogeneity. Am J Physiol 244: G583–G589

    PubMed  CAS  Google Scholar 

  • Bass L (1985) Heterogeneity within observed regions: physiologic basis and effects on estimation of rates of biodynamic processes. Circulation 72 Suppl 4: 47–52

    Google Scholar 

  • Bass L, Robinson PJ (1981) Effects of capillary heterogeneity on rates of steady state uptake of substances by the intact liver. Microvas Res 22: 43–57

    CAS  Google Scholar 

  • Bass NM, Barker ME, Manning JA, Jones AL, Ockner RK (1989) Acinar heterogeneity of fatty acid binding protein expression in livers of male, female, and clofibrate-treated rats. Hepatology 9: 12–21

    PubMed  CAS  Google Scholar 

  • Boyer JL, Elias E, Layden TJ (1979) The paracellular pathway and bile formation. Yale J Biol Med 52: 61–67

    PubMed  CAS  Google Scholar 

  • Braakman I, Groothuis GMM, Meijer DKF (1987) Acinar heterogeneity in hepatic transport of the organic cation rhodamine B in rat liver. Hepatology 7: 849–855

    PubMed  CAS  Google Scholar 

  • Braakman I, Groothuis GMM, Meijer DKF (1989) Zonal compartmentation of perfused rat liver: plasma reapparance of rhodamine B explained. J Pharmacol Ther 239: 869–873

    Google Scholar 

  • Brauer RW, Leong GF, McElroy RF, Holloway RJ (1956) Circulatory pathways in the rat liver as revealed by Pβ2 chromic phosphate colloid uptake in the perfused rat liver. Am J Physiol 184: 593–598

    PubMed  CAS  Google Scholar 

  • Breznicka EA, Hazelton GA, Klaassen CD (1987) Comparison of adenosine 3’-phosphate 5’-phosphosulfate concentrations in tissues from different laboratory animals. Drug Metab Dispos 15: 133–135

    Google Scholar 

  • Burger HJ, Gebhardt R, Mayer C, Mecke D (1989) Different capacities for amino acid transport in periportal and perivenous hepatocytes isolated by digitonin/collagenase perfusion. Hepatology 9: 22–28

    PubMed  CAS  Google Scholar 

  • Chen R, Gillette JR (1988) Pharmacokinetic procedures for the estimation of organ clearances for the formation of short-lived metabolites. Acetaminophen induced glutathione depletion in hamster. Drug Metab Dispos 16: 373–385

    Google Scholar 

  • Chiba M, Hollands, Pang KS (1993) Hepatic uptake of 4-methylumbelliferyl sulfate: a multiple indicator dilution study in perfused rat liver ( Abstr ). FASEB J 7: A481

    Google Scholar 

  • Chiba M, Pang KS (1993a) Effect of protein binding on 4-metylumbelliferyl sulfate desulfation kinetics in perfused rat liver. J Pharmacol Exp Ther 266: 492–499

    PubMed  CAS  Google Scholar 

  • Chiba M, Pang KS (1993b) The acinar distribution of glutathione (GSH) on its depletion kinetics: a simulation study. ASPET, abstract, San Francisco

    Google Scholar 

  • Chiba M, Poon K, Hollands J, Pang KS (1994) Glycine conjugation of benzoic acid and its acinar localization in liver. J Pharmacol Exp Ther 268: 409–416

    PubMed  CAS  Google Scholar 

  • Conway JG, Kauffman FC, Tsukada T, Thurman RG (1984) Glucuronidation of 7-hydroxycoumarin in periportal and pericentral regions of the liver lobule. Mol Pharmacol 25: 487–493

    PubMed  CAS  Google Scholar 

  • Conway JG, Kauffman FC, Thurman RG (1985) Effect of glucose on 7-hydroxycoumarin glucuronide production in periportal and pericentral regions of the liver lobule. Biochem J 226: 749–756

    PubMed  CAS  Google Scholar 

  • Conway JG, Kauffman FC, Tsukuda T, Thurman RG (1987) Glucuronidation of 7-hydroxycoumarin in periportal and pericentral regions of the lobule in livers from untreated and 3-methyl-cholanthrene-treated rats. Mol Pharmacol 33: 111–119

    Google Scholar 

  • Dawson JR, Weitering JG, Mulder GJ, Stillwell RN, Pang KS (1985) Alteration of transit time and direction of flow to probe the heterogeneous distribution of conjugation activities for harmol in the perfused rat liver preparation. J Pharmacol Exp Ther 234: 691–697

    PubMed  CAS  Google Scholar 

  • DeBaun JR, Smith JYR, Miller EC, Miller JA (1971) Reactivity in vivo of the carcinogen N-hydroxy-2-acetylaminoflourene: increase by sulfate ion. Science 167: 184–186

    Google Scholar 

  • De Lannoy I AM, Pang KS (1986) A commentary. The presence of diffusional barriers on drug and metabolite kinetics. Enalaprilat as a generated versus preformed metabolite. Drug Metab Dispos 14: 513–520

    Google Scholar 

  • De Lannoy IAM, Pang KS (1987) Diffusional barriers on drug and metabolite kinetics. Drug Metab Dispos 15: 51–58

    PubMed  Google Scholar 

  • De Leeue AM, Knook DL (1984) The ultrastructure of sinusoidal liver cells in the intact rat at various ages. In: van Bezooijen CFA (ed) Pharmacological, morphological and physiological aspects of aging. Eurage, Rijswik, pp 91–96

    Google Scholar 

  • Dills RL, Klaassen CD (1986) The effect of inhibitors of mitochondrial energy production on hepatic glutathione, UDP-glucuronic acid, and adenosine 3’-phosphate-5’-phosphosulfate concentrations. Drug Metab Dispos 14: 190–196

    PubMed  CAS  Google Scholar 

  • Dills RL, Klaassen CD (1987) Hepatic UDP-glucose and UDP-glucuronic acid sysnthesis rates in rats during a reduced energy state. Drug Metab Dispos 15: 281–288

    PubMed  CAS  Google Scholar 

  • Dutton GJ (1980) Glucuronidation of drugs and other compounds. CRC, Boca Raton

    Google Scholar 

  • Ebling WF, Jusko WJ (1986) The determination of essential clearance, volume, and residence time parameters of recirculating metabolic systems: the reversible metabolism of methylprednisolone and methylprednisone in rabbits. J Pharmacokinet Biopharm 14: 557–599

    PubMed  CAS  Google Scholar 

  • El Mouelhi M, Kauffman FC (1986) Sublobular distribution of transferases and hydrolases associated with glucuronide, sulfate, and glutathione conjugation in human liver. Hepatology 6: 450–456

    PubMed  Google Scholar 

  • Eling TE, Curtis JF, Harman LS, Mason RP (1986) Oxidation of glutathione to its thiyl free radical metabolite by prostaglandin H synthase. J Biol Chem 261: 5023–5028

    PubMed  CAS  Google Scholar 

  • Fayz S, Cherry WF, Dawson JR, Mulder GJ, Pang KS (1984) Inhibition of acetaminophen sulfation by 2,6-diehloro-4-nitrophenol in the perfused rat liver preparation. Lack of a compensatory increase in glucuronidation. Drug Metab Dispos 12: 323–329

    Google Scholar 

  • Fernandes-Checa JC, Kaplowitz N (1990) The use of monochlorobimane to determine hepatic GSH levels and synthesis. Anal Biochem 190: 212–219

    Google Scholar 

  • Ferry JJ Jr, Wagner JG (1986) The non-linear pharmacokinetics of prednisone and prednisolone. I. Theoretical. Biopharm Drug Dispos 7: 91–101

    Google Scholar 

  • Finkelstein TD, Mudd SH (1967) Trans-sulfuration in mammals: the methionesparing effect of cysteine. J Biol Chem 242: 873–880

    PubMed  CAS  Google Scholar 

  • Fleischner G, Meijer DKF, Levine WG, Gatmaitan Z, Gluck R, Arias IM (1975) Effect of hypolipidemic drugs, nafenopin and Clofibrate, on the concentration of ligandin and Z protein in rat liver. Biochem Biophys Res Commun 67: 1401–1407

    PubMed  CAS  Google Scholar 

  • Froment GF, Bischoff KB (1976) In: Chemical reactor analysis and design. Wiley, New York, p 10

    Google Scholar 

  • Galinsky RE, Levy G (1981) Dose- and time-dependent elimination of acetaminophen in rats: pharmacokinetic implications of cosubstrate depletion. J Pharmacol Exp Ther 210: 14–20

    Google Scholar 

  • Gärtner U, Stockert RJ, Levine WG, Wolkoff AW (1982) Effect of nafenopin on the uptake of bilirubin and sulfobromophthalein by the isolated perfused rat liver. Gastroenterology 83: 1163–1169

    PubMed  Google Scholar 

  • Geng WP, Barker F, Schwab AJ, Goresky CA, Pang KS (1993) Hepatic uptake of bromosulfophthalein-glutathione conjugate in perfused rat liver. A multiple indicator dilution study ( Abstr ). FASEB J 7: A481

    Google Scholar 

  • Gillette JR (1971) Factors affecting drug metabolism. Ann NY Acad Sei 179: 43–46

    CAS  Google Scholar 

  • Gillette JR (1973) Overview of drug-protein binding. NY Acad Sei 226: 6–17

    CAS  Google Scholar 

  • Gillette JR, Pang KS (1977) Theoretical aspects of pharmacokinetic drug interactions. Clin Pharmacol Ther 22: 623–639

    PubMed  CAS  Google Scholar 

  • Gonzalez-Fernandez JM, Atta SE (1973) Maximal substrate transport in capillary networks. Microvasc Res 5: 180–198

    PubMed  CAS  Google Scholar 

  • Gooding PE, Chayen J, Sawyer B, Slater TF (1978) Cytochrome P-450 distribution in rat liver and the effect of sodium phenobarbitone administration. Chem Biol Interact 20: 299–310

    PubMed  CAS  Google Scholar 

  • Goresky CA (1963) A linear method for determining liver sinusoidal and extravascular volumes. Am J Physiol 204: 626–640

    PubMed  CAS  Google Scholar 

  • Goresky CA, Groom AC (1984) Microcirculatory events in the liver and the spleen. In: Renkin EM, Michel CC (eds) The cardiovascular system IV. American Physiological Society, Washington, pp 689–780 (Handbook of Physiology)

    Google Scholar 

  • Goresky CA, Bach GG, Nadeau E (1973) On the uptake of materials by the intact liver: the transport and net removal of galactose. J Clin Invest 52: 991–1009

    PubMed  CAS  Google Scholar 

  • Goresky CA, Bach GG, Nadeau E (1975) Red cell carriage of label. Its limiting effect on the exchange of materials in the liver. Circ Res 36: 328–351

    Google Scholar 

  • Goresky CA, Daly DS, Mishkin D, Arias IM (1978) Uptake of labeled palmitate by the intact liver: role of intracellular binding sites. Am J Physiol 234: E542–E553

    PubMed  CAS  Google Scholar 

  • Goresky CA, Schwab AJ, Rose CP (1988) Xenon handling in the liver: red cell capacity effect. Circ Res 63: 767–778

    PubMed  CAS  Google Scholar 

  • Goresky CA, Pang KS, Schwab AJ, Barker F III, Cherry WF, Bach GG (1992) Uptake of a protein bound polar compound, acetaminophen sulfate, by perfused rat liver. Hepatology 16: 173–190

    PubMed  CAS  Google Scholar 

  • Goresky CA, Bach GG, Schwab AJ (1993a) Distributed-in-space product formation in vivo: linear kinetics. Am J Physiol 264: H2007–H2028

    PubMed  CAS  Google Scholar 

  • Goresky CA, Bach GG, Schwab AJ (1993b) Distributed-in-space product formation in vivo: enzyme kinetics. Am J Physiol 264: H2029–H2050

    PubMed  CAS  Google Scholar 

  • Grausz H, Schmid R (1971) Reciprocal relation between plasma albumin level and hepatic sulfobromophthalein removal. N Engl J Med 284: 1403–1404

    PubMed  CAS  Google Scholar 

  • Griffith OW, Meister A (1979) Translocation of intracellular glutathione to membranebound gamma-glutamyltranspeptidase as a discrete step in the gamma-glutamyl cycle: glutathionuria after inhibition of transpeptidase. Proc Natl Acad Sei USA 76: 268–272

    CAS  Google Scholar 

  • Gugler R, Mueller G (1978) Plasma protein binding of valproic acid in healthy subjects and in patients with renal disease. Br J Clin Pharmacol 5: 441–446

    PubMed  CAS  Google Scholar 

  • Gumucio DL, Gumucio JJ, Wilson JAP, Cutter C, Krauss M, Caldwell R, Chen E (1984) Albumin influences sulfobromophthalein transport by hepatocytes of each acinar zone. Am J Physiol 246: G86–G95

    PubMed  CAS  Google Scholar 

  • Gumucio JJ, Balabaud C, Miller DL, Demason LF, Appleman HD, Stoecker TJ, Franzblau DR (1978) Bile secretion and liver cell heterogeneity in the rat. J Lab Clin Med 91: 350–362

    PubMed  CAS  Google Scholar 

  • Gumucio JJ, Miller DL, Krauss MD, Zanolli CC (1981) Transport of fluorescent compounds into hepatocytes and the resultant zonal labeling of the hepatic acinus in the rat. Gastroenterology 80: 639–646

    PubMed  CAS  Google Scholar 

  • Hjelle JJ, Hazelton GA, Klaassen CD (1985) Acetaminophen decreases adenosine 3’-phosphate 5’-phosphosulfate and uridine diphosphoglucuronic acid in rat liver. Drug Metab Dispos 13: 35–41

    PubMed  CAS  Google Scholar 

  • Howell SR, Hazelton GA, Klaassen CD (1986) Depletion of hepatic UDP-glucuronic acid by drugs that are glucuronidated. J Pharmacol Exp Ther 236: 610–614

    PubMed  CAS  Google Scholar 

  • Huang JD, Oie S (1984) Hepatic elimination of drugs with concentration-dependent serum protein binding. J Pharmacokinet Biopharm 12: 67–81

    PubMed  CAS  Google Scholar 

  • Hwang S, Kwan KC, Albert KS (1981) A linear model of reversible metabolism and its bioavailability assessment. J Pharmacokinet Biopharm 9: 693–709

    PubMed  CAS  Google Scholar 

  • Jansen JA (1981) Influence of plasma protein binding kinetics on hepatic clearance assessed from a “tube” model and a “well-stirred” model. J Pharmacokinet Biopharm 19: 15–26

    Google Scholar 

  • Jollow DJ, Thorgeirsson SS, Potter WZ, Hashimoto M, Mitchell JR (1974) Acetaminophen-induced hepatic necrosis. VI. Metabolic disposition of toxic and nontoxic doses of acetaminophen. Pharmacology 12: 251–271

    Google Scholar 

  • Jones AL, Hreadek GT, Renston RH, Wong KY, Karlagnais G, Paumgartner G (1980) Autoradiographic evidence for hepatic lobular concentration gradient of bile acid derivative. Am J Physiol 238: G233–G237

    PubMed  CAS  Google Scholar 

  • Jungerman K, Katz N (1982) Functional hepatocellular heterogeneity. Hepatology 2: 385–395

    Google Scholar 

  • Jusko WJ, Gretch M (1976) Plasma and tissue protein binding of drugs in pharmacokinetics. Drug Metab Rev 5: 43–140

    CAS  Google Scholar 

  • Kaplowitz N, Kuhlenkamp J, Goldstein L, Reeve J (1980) Effect of salicylates and phenobarbital on hepatic glutathione in the rat. J Pharmacol Exp Ther 212: 240–245

    PubMed  CAS  Google Scholar 

  • Kaplowitz N, Aw TK, Ookhtens M (1985) The regulation of hepatic glutathione. Annu Rev Pharmacol Toxicol 25: 715–744

    PubMed  CAS  Google Scholar 

  • Kauffman FC, Whittaker M, Anundi I, Thurman RG (1991) Futile cycling of a sulfate conjugate by isolated hepatocytes. Mol Pharmacol 39: 414–420

    PubMed  CAS  Google Scholar 

  • Keiding E, Chiarantini E (1978) Effect of sinusoidal perfusion on galactose elimination kinetics in perfused rat liver. J Pharmacol Exp Ther 205: 465–470

    PubMed  CAS  Google Scholar 

  • Kitamura T, Jansen P, Hardenbrook C, Kamimoto Y, Gatmaitan Z, Arias IM (1990) Defective ATP-dependent bile canalicular transport of organic anions in mutant (TR_1) rats with conjugated hyperbilirubinemia. Proc Natl Acad Sci USA 87: 3557–3561

    PubMed  CAS  Google Scholar 

  • Knapp SA, Green MD, Tephly TR, Baron J (1988) Immuno-histochemical demonstration of isozyme- and strain- specific differences in the intralobular localizations and distributions of UDP-glucuronosyltransferases in livers of untreated rats. Mol Pharmacol 33: 14–21

    PubMed  CAS  Google Scholar 

  • Kosower NS, Kosower EM (1978) The glutathione status of cells. Int Rev Cytol 54: 109–160

    PubMed  CAS  Google Scholar 

  • Koster H, Halsema I, Pang KS, Scholtens E, Mulder GJ (1982) Kinetics of sulfation and glucuronidation of harmol in the perfused rat liver preparation. Disappearance of aberrancies in glucuronidation kinetics by inhibition of sulfation. Biochem Pharmacol 31: 3023–3038

    Google Scholar 

  • Krijgsheld KR, Frankena H, Scholtens E, Zweens J, Mulder GJ (1979) Absorption, serum levels and urinary excretion of inorganic sulfate after oral administration of sodium sulfate in the conscious rat. Biochim Biophys Acta 586: 492–500

    PubMed  CAS  Google Scholar 

  • Krijgsheld KR, Scholtens E, Mulder GJ (1982) The dependence of the rate of sulphate conjugation on the plasma concentration of inorganic sulphate in the rat in vivo. Biochem Pharmacol 31: 3997–4000

    PubMed  CAS  Google Scholar 

  • Langa AJ, Israel Y (1991) Histochemical demonstration of sinusoidal gammaglutamyltransferase activity by substrate protection fixation: comparative studies in rat and guinea pig liver. Hepatology 14: 857–863

    Google Scholar 

  • Lauterburg BH, Vaishnav Y, Stillwell WG, Mitchell JR (1980) The effect of age and glutathione depletion on hepatic glutathione turnover in vivo determined by acetaminophen probe analysis. J Pharmacol Exp Ther 213: 54–58

    PubMed  CAS  Google Scholar 

  • Lauterburg BH, Mitchel JR (1981) Regulation of hepatic glutathione turnover in rats in vivo and evidence for kinetic homogeneity of the hepatic glutathione pool. J Clin Invest 67: 1415–1424

    PubMed  CAS  Google Scholar 

  • Lauterburg BH, Smith CV, Hughes H, Mitchell JR (1982) Determinants of hepatic glutathione turnover: toxicolgical significance. Trends Pharmacol Sci 3: 245–248

    CAS  Google Scholar 

  • Levenspiel O (1972) In: Chemical reaction engineering, 2nd edn. Wiley, New York, pp 182–185

    Google Scholar 

  • Levy G, Yacobi A (1974) Effect of protein binding on elimination of warfarin. J Pharm Sci 63: 805–806

    PubMed  CAS  Google Scholar 

  • Lin JH, Levy G (1986) Effect of prevention of inorganic sulfate depletion on the pharmacokinetics of acetaminophen in rats. J Pharmacol Exp Ther 239: 94–98

    PubMed  CAS  Google Scholar 

  • Mais RF, Kereszies-Nagy S, Zaroslinski JF, Oester YT (1974) Interpretation of protein-drug interaction through fraction unbound and relative contribution of secondary sites. J Pharm Sci 63: 1423–1427

    PubMed  CAS  Google Scholar 

  • McFarlane BM, Spios J, Gove CD, McFarlane IG, Williams R (1990) Antibodies against the hepatic asialoglycoprotein receptor perfused in situ preferentially attach to periportal liver cells in the rat. Hepatology 11: 408–415

    PubMed  CAS  Google Scholar 

  • Meerman JHN, Mulder GJ (1981) Prevention of the hepatotoxic action of N-hydroxy-2-acetylaminofluorene in the rat by inhibition of N-O-sulfation by pentachlorophenol. Life Sci 21: 2361–2365

    Google Scholar 

  • Meffin PJ, Zilm DM, Veenendaal JR (1983) Reduced clofibric acid clearance in renal dysfunction is due to a futile cycle. J Pharmacol Exp Ther 227: 732–738

    PubMed  CAS  Google Scholar 

  • Meijer DKF (1987) Current concepts on hepatic transport of drugs. J Hepatol 4: 259–268

    PubMed  CAS  Google Scholar 

  • Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52: 711–760

    CAS  Google Scholar 

  • Miller DL, Zanolli CS, Gumucio J J (1979) Quantitative morphology of the sinusoids in the hepatic acinus. Gastroenterology 76: 965–969

    PubMed  CAS  Google Scholar 

  • Miyauchi S, Sugiyama Y, Sato H, Sawada Y, Iga I, Hanano M (1987a) Effect of a diffusional barrier to a metabolite across hepatocytes on its kinetics in “enzymedistributed” models: a computer-aided simulation study. J Pharmacokinet Biopharm 15: 399–421

    PubMed  CAS  Google Scholar 

  • Miyauchi S, Sugiyama Y, Sawada Y, Iga T, Hanano M (1987b) Conjugative metabolism of 4-methylumbelliferone in the rat liver: verification of the sequestration process in multiple indicator dilution experiments. Chem Pharm Bull (Tokyo) 35: 4241–4248

    CAS  Google Scholar 

  • Miyauchi S, Sugiyama Y, Sawada Y, Morita K, Iga T, Hanano M (1987c) Kinetics of transport of 4-methylumbelliferone in rats. Analysis by multiple indicator dilution method. J Pharmacokinet Biopharm 15: 25–38

    Google Scholar 

  • Miyauchi S, Sugiyama Y, Iga T, Hanano M (1989) The conjugative metabolism of 4-methylumbelliferone and deconjugation to the parent drug examined by isolated perfused liver and in vitro homogenate of rats. Chem Pharm Bull (Tokyo) 37: 475–480

    CAS  Google Scholar 

  • Morris ME, Pang KS (1987) Competition between two enzymes for substrate removal in liver: modulating effects of competitive pathways. J Pharmacokinet Biopharm 15: 473–496

    PubMed  CAS  Google Scholar 

  • Morris ME, Yuen V, Pang KS (1987) Competing pathways in drug metabolism. II. Competing pathways in drug metabolism. Enzymic systems for 2- and 5-sulfoconjugation are distributed anterior to 5-glueuronidation in the metabolism of gentisamide by the perfused rat liver. J Pharmacokinet Biopharm 16: 633–656

    Google Scholar 

  • Morris ME, Yuen V, Tang BK, Pang KS (1988) Competing pathways in drug metabolism. I. Effect of varying input concentrations on gentisamide conjugation in the once-through in situ perfused rat liver preparation. J Pharmacol Exp Ther 245: 614–652

    Google Scholar 

  • Mulder GJ, Hadgedoorn AH (1974) UDP-glucuronyltransferase and phenolsulfotransferase in vivo and in vitro. Conjugation of harmol and harmolol. Biochem Pharmacol 23: 2101–2109

    Google Scholar 

  • Mulder GJ, Keulemans K (1978) Metabolism of inorganic sulfate in the isolated perfused rat liver. Biochem J 176: 959–965

    PubMed  CAS  Google Scholar 

  • Murray GI, Burke MD, Even SWB (1986) Glutathione lozalization by a novel ophthalaldehyde histofluorescence method. Histochem J 18: 434–440

    PubMed  CAS  Google Scholar 

  • Nathanson MH, Boyer JL (1991) Special article. Mechanisms and regulation of bile secretion. Hepatology 14: 551–566

    Google Scholar 

  • Novikoff AB (1959) Cell heterogeneity within the hepatic lobule of the rat (staining reactions). J Histochem Cytochem 7: 240–244

    PubMed  CAS  Google Scholar 

  • Oie S (1986) Drug distribution and binding. J Clin Pharmacol 26: 583–586

    PubMed  CAS  Google Scholar 

  • Oie S, Levy G (1975) Effect of plasma protein binding on elimination of bilirubin. J Pharm Sei 64: 1433–1434

    CAS  Google Scholar 

  • Ookhtens M, Hobdy K, Corvasce MC, Aw TY, Kaplowitz N (1985) Sinusoidal efflux of glutathione in the perfused rat liver. Evidence for a carrier-mediated process. J Clin Invest 75: 258–265

    Google Scholar 

  • Orrenius S, Ormstad K, Thor H, Jewell SA (1983) Turnover and functions of glutathione studies with isolated hepatic and renal cells. Fed Proc 42: 3177–3188

    PubMed  CAS  Google Scholar 

  • Pang KS (1990) Kinetics of conjugation reactions in eliminating organs. In: Mulder GJ (ed) Conjugation reactions in drug metabolism: an integrated approach. Taylor and Francis, London, pp 5–39

    Google Scholar 

  • Pang KS, Barker F III, Schwab AJ, Goresky CA (1988a) Red cell carriage of acetaminophen as studied by the technique of multiple indicator dilution in perfused rat liver. Hepatology 8: 1384 (abstract No 667)

    Google Scholar 

  • Pang KS, Cherry WF, Accaputo J, Schwab AJ, Goresky CA (1988b) Combined hepatic arterial-portal venous or hepatic venous flows once-through the in situ perfused rat liver to probe the abundance of drug metabolizing activities. Perihepatic venous O-deethylation activity for phenacetin and periportal sulfation activity for acetaminophen. J Pharmacol Exp Ther 247: 690–700

    Google Scholar 

  • Pang KS, Chiba M (1994) Metabolism: scaling up from in vitro to organ and whole body. In: Welling PG, Balant LP (eds) Handbook of Experimental Pharmacology. Springer, Berlin Heidelberg New York 101–187

    Google Scholar 

  • Pang KS, Gillette JR (1979) Sequential first-pass elimination of a metabolite derived from its precursor. J Pharmacokinet Biopharm 7: 275–290

    PubMed  CAS  Google Scholar 

  • Pang KS, Goresky CA, Schwab AJ (1991) Deterministic factors underlying drug and metabolite clearances in rat liver perfusion studies. In: Ballet F, Thurman RG (eds) Research in perfused liver: clinical and basic applications. INSERM, Paris; Libbey, London, pp 259–302

    Google Scholar 

  • Pang KS, Koster H, Halsema ICM, Scholtens E, Mulder GJ (1981) Aberrant pharmacokinetics of harmol in the perfused rat liver preparation: sulfate and glucuronide conjugations. J Pharmacol Exp Ther 219: 134–140

    PubMed  CAS  Google Scholar 

  • Pang KS, Koster H, Halsema ICM, Scholtens E, Mulder GJ, Stillwell RN (1983) Normal and retrograde perfusion to probe the zonal distribution of sulfation and glucuronidation activities of harmol in the perfused rat liver preparation. J Pharmacol Exp Ther 224: 647–653

    PubMed  CAS  Google Scholar 

  • Pang KS, Lee WF, Cherry WF, Yuen V, Accaputo J, Schwab AJ, Goresky CA (1988c) Effects of perfusate flow rate on measured blood volume, Disse space, intracellular water spaces, and drug extraction in the perfused rat liver preparation: characterization by the technique of multiple indicator dilution. J Pharmacokinet Biopharm 16: 595–605

    PubMed  CAS  Google Scholar 

  • Pang KS, Mulder GJ (1990) A commentary: effect of flow on formation of metabolites. Drug Metab Dispos 18: 270–275

    PubMed  CAS  Google Scholar 

  • Pang KS, Rowland M (1977a) Hepatic clearance of drugs. I. Theoretical consideration of a “well-stirred” model and a “parallel tube” model. Influence of hepatic blood flow, plasma and blood cells binding, and the hepatocellular activity on hepatic drug clearance. J Pharmacokinet Biopharm 5: 625–653

    Google Scholar 

  • Pang KS, Rowland M (1977b) Hepatic clearance of drugs. II. Experimental evidence for acceptance of the “well-stirred” model over the “parallel tube” model using lidocaine in the perfused rat liver in situ preparation. J Pharmacokinet Biopharm 5: 655–680

    Google Scholar 

  • Pang KS, Stillwell RN (1983) An understanding of the role of enzymic localization of the liver on metabolite kinetics: a computer simulation. J Pharmacokinet Biopharm 11: 451–468

    PubMed  CAS  Google Scholar 

  • Pang KS, Terrell JA (1981a) Retrograde perfusion to probe the heterogeneous distribution of hepatic drug metabolizing enzymes in rats. J Pharmacol Exp Ther 216: 339–346

    PubMed  CAS  Google Scholar 

  • Pang KS, Terrell J A (1981b) Conjugation kinetics of acetaminophen by the perfused liver preparation. Biochem Pharmacol 38: 1959–1965

    Google Scholar 

  • Pang KS, Xu X (1988) Drug metabolism factors in drug discovery and design. In: Welling PG, Tse FL-S (eds) Pharmacokinetics: regulatory-industrial-academic perspectives. Dekker, New York, pp 383–447

    Google Scholar 

  • Pang KS, Xu X, St-Pierre MV (1992) Determinants of metabolite disposition. Annu Rev Pharmacol 32: 623–669

    CAS  Google Scholar 

  • Pang KS, Xu X, Morris ME, Yuen V (1987) Kinetic modeling of conjugations in liver. Fed Proc 46: 2439–2441

    CAS  Google Scholar 

  • Polhuijs M, Meijer DKF, Mulder GJ (1991) The fate of diastereomeric glutathione conjugates of alpha-bromoisovalerylurea in blood in the rat in vivo and in the perfused liver. Stereoselectivity in biliary and urinary excretion. J Pharmacol Exp Ther 256: 458–461

    Google Scholar 

  • Polhuijs M, Cherry WF, Gasinska I, Mulder GJ, Pang KS (1993) Stereoselective glutathione conjugation and amidolysis of R-(+)- and S-(-)-a-bromoisovalerylurea in the perfused rat liver preparation. J Pharmacol Exp Ther 265: 1402–1412

    Google Scholar 

  • Price VF, Jollow DJ (1984) Role of UDPGA flux in acetaminophen clearance and hepatotoxicity. Xenobiotica 7: 553–559

    Google Scholar 

  • Rappaport AM (1958) The structural and functional unit in the human liver (liver acinus). Anat Ree 130: 673–689

    CAS  Google Scholar 

  • Rappaport AM (1980) Hepatic blood flow: Morphologic aspects and physiologic regulation. Int Rev Physiol 21: 1–63

    PubMed  CAS  Google Scholar 

  • Rappaport AM, Borowy ZJ, Lougheed WM, Lotto WN (1954) Subdivision of hexagonal liver lobules into a structural and functional unit: role in hepatic physiology and pathology. Anat Ree 119: 11–34

    CAS  Google Scholar 

  • Ratna S, Chiba M, Bandyophdhyay L, Pang KS (1993) Futile cycling between 4-methylumbelliferone and its conjugates in perfused rat liver. Hepatology 17: 838–853

    PubMed  CAS  Google Scholar 

  • Redick JA, Jakoby WB, Baron J (1982) Immunohistochemical localization of glutathione-S-transferase in livers of untreated rats. J Biol Chem 257: 15200–15203

    PubMed  CAS  Google Scholar 

  • Reed RG, Orrenius S (1977) The role of methionine in glutathione biosynthesis by isolated hepatocytes. Biochem Biophys Res Commun 77: 1257–1264

    PubMed  CAS  Google Scholar 

  • Rowland M (1984) Protein binding and drug clearance. Clin Pharmacokinet 9 Suppl 1: 10–17

    Google Scholar 

  • Rowland M, Benet LZ, Graham GG (1973) Clearance concepts in pharmacokinetics. J Pharmacokinet Biopharm 1: 123–136

    PubMed  CAS  Google Scholar 

  • Rubin GM, Tozer TN (1986) Hepatic binding and Miehaelis-Menten metabolism of drugs. J Pharm Sei 75: 660–663

    CAS  Google Scholar 

  • Sato H, Sugiyama Y, Miyauchi S, Sawada Y, Iga T, Hanano M (1986) A simulation study on the effect of a uniform diffusional barrier across hepatocytes on drug metabolism by evenly or unevenly distributed uni-enzyme in the liver. J Pharm Sci 75: 3–8

    PubMed  CAS  Google Scholar 

  • Schary WL, Rowland M (1983) Protein binding and hepatic clearance: studies with tolbutamide, a drug of low intrinsic clearance, in the isolated perfused rat liver preparation. J Pharmacokinet Biopharm 11: 225–243

    PubMed  CAS  Google Scholar 

  • Schwarz LR, Schwenk M (1984) Sulfation in isolated enterocytes of guinea-pig: dependence on inorganic sulfate. Biochem Pharmacol 33: 3353–3356

    PubMed  CAS  Google Scholar 

  • Shand DG, Kornhauser DM, Wilkinson GR (1975) Effects of route of administration and blood flow on hepatic elimination. J Pharmacol Exp Ther 195: 424–432

    PubMed  CAS  Google Scholar 

  • Sies H, Graf P (1985) Hepatic thiol and glutathione efflux under the influence of vasopressin, phenylephrine and adrenaline. Biochem J 226: 545–549

    PubMed  CAS  Google Scholar 

  • Singh J, Schwarz LR (1981) Dependence of glucuronidation rate on UDP-glucuronic acid levels in isolated hepatocytes. Biochem Pharmacol 30: 3252–3254

    PubMed  CAS  Google Scholar 

  • Smallwood RH, Mihaly GW, Smallwood RA, Morgan DJ (1988) Effect of a protein binding change on unbound and total plasma concentrations for drugs of intermediate hepatic extraction. J Pharmacokinet Biopharm 16: 529–542

    PubMed  CAS  Google Scholar 

  • Smith BR, van Anda J, Fouts JR, Bend JR (1983) Estimation of the styrene 7,8- oxide-detoxifying potential of epoxide hydrolase in glutathione-depleted, perfused rat liver. J Pharmacol Exp Ther 227: 491–498

    PubMed  CAS  Google Scholar 

  • Smith MT, Loveridege N, Wills ED, Chayen J (1979) The distribution of glutathione content in the rat liver lobule. Biochem J 182: 103–108

    PubMed  CAS  Google Scholar 

  • Sorrentino D, Licko V, Weisiger RA (1988) Sex difference in sulfobromophthalein glutathione transport by perfused rat liver. Biochem Pharmacol 37: 3119–3126

    PubMed  CAS  Google Scholar 

  • Sorrentino D, Robinson RB, Kiang C-L, Berk PD (1989a) At physiological albumin/oleate concentrations oleate uptake by isolated hepatocytes, cardiac myocytes, and adipocytes is a saturable function of the unbound oleate concentration. Uptake kinetics are consistent with the conventional theory. J Clin Invest 84: 1325–1333

    Google Scholar 

  • Sorrentino D, Weisiger RA, Bass NM, Licko V (1989b) The hepatocellular transport of sulfobromophthalein-glutathione by clofibrate treated-perfused rat liver. Lipids 24: 438–442

    PubMed  CAS  Google Scholar 

  • Speisky H, Shackel N, Varghese G, Wade D, Israel Y (1990) Role of hepatic yglutamyltransferase in the degradation of circulating glutathione: Studies in the intact guinea pig perfused liver. Hepatology 11: 843–849

    Google Scholar 

  • Steele JW, Yagen B, Hernandez O, Cox RH, Smith BR, Bend JR (1981) The metabolism and excretion of styrene oxide-glutathione conjugates in the rat and by isolated perfused liver, lung, and kidney preparations. J Pharmacol Exp Ther 219: 35–41

    PubMed  CAS  Google Scholar 

  • St-Pierre MV, Lee PI, Pang KS (1992) A comparative investigation of hepatic clearance models: predictions of metabolite formation and elimination. J Pharmacokinet Biopharm 20: 105–145

    PubMed  CAS  Google Scholar 

  • Sundheimer DW, Brendel K (1983) Metabolism of harmol and transport of harmol conjugates in isolated rat hepatocytes. Drug Metab Dispos 11: 433–440

    PubMed  CAS  Google Scholar 

  • Sweeny DJ, Reinke LA (1988) Sulfation of acetaminophen in isolated rat hepatocytes. Relationship to sulfate ion concentrations and intracellular levels of 3’-phosphoadenosine-5’-phosphosulfate. Drug Metab Dispos 16: 712–715

    PubMed  CAS  Google Scholar 

  • Tateishi N, Higashi T, Naruse A, Hikita K, Sakamoto Y (1981) Relative contributions of sulfur atoms of dietary cysteine and methionine to rat liver glutathione and proteins. J Biochem 90: 1603–1610

    PubMed  CAS  Google Scholar 

  • Theilmann L, Stollman YR, Arias IM, Wolkoff AW (1985) Does Z-protein have a role in transport of bilirubin and bromosulfophthalein by isolated perfused rat liver? Hepatology 5: 923–926

    Google Scholar 

  • Thurman RG, Kauffman FC, Jungermann K (1987) Regulation of hepatic metabolism. Intra- and intercellular compartmentation. Plenum, New York

    Google Scholar 

  • Ullrich D, Fisher G, Katz N, Bock KW (1984) Intralobular distribution of UDPglucuronosyltransferase in livers from untreated, 3-methylcholanthrene- and phenobarbital-treated rats. Chem Biol Interact 48: 181–190

    PubMed  CAS  Google Scholar 

  • Van Anda J, Smith BR, Bend JR (1979) Concentration-dependent metabolism and toxicity of [14C]styrene oxide in the isolated perfused rat liver. J Pharmacol Exp Ther 211: 207–212

    PubMed  Google Scholar 

  • Wagner JG, DiSanto AR, Gillispie WR, Albert KS (1981) Reversible metabolism and pharmacokinetics. Application to prednisone-prednisolone. Res Commun Chem Pathol Pharmacol 32: 387–405

    Google Scholar 

  • Watari N, Iwai M, Kaneniwa N (1983) Pharmacokinetic study of the fate of acetaminophen and its conjugates. J Pharmacokinet Biopharm 11: 245–272

    PubMed  CAS  Google Scholar 

  • Watkins JB, Klaassen CD (1983) Chemically-induced alteration of UDP-glucuronic acid concentration in rat liver. Drug Metab Dispos 11: 37–40

    PubMed  CAS  Google Scholar 

  • Weisiger RA (1985) Dissociation from albumin: a potentially rate-limiting step in the clearance of substances. Proc Natl Acad Sci USA 82: 1563–1567

    PubMed  CAS  Google Scholar 

  • Weisiger RA, Mendel CA, Cavalieri RR (1986) The hepatic sinusoid is not wellstirred: estimation of the degree of axial mixing by analysis of lobular concentration gradients formed during uptake of thyroxine by the perfused rat liver. J Pharm Sci 75: 233–237

    PubMed  CAS  Google Scholar 

  • Whitsett JL, Dayton PG, McNay TL (1971) The effect of hepatic blood flow on the hepatic removal rate of oxyphenbutazone in the dog. J Pharmacol Exp Ther 177: 246–255

    PubMed  CAS  Google Scholar 

  • Wilkinson GR (1987) Clearance approaches in pharmacology. Pharmacol Rev 39: 1–47

    PubMed  CAS  Google Scholar 

  • Wilkinson GR, Shand DG (1975) Commentary. A physiological approach to hepatic drug clearance. Clin Pharmacol Ther 18: 377–390

    Google Scholar 

  • Winkler W, Keiding S, Tygstrup N (1973) Clearance as a quantitative measure of structure and function. In: Paumgartner P, Preisig R (eds) The liver: quantitative aspects of structure and function. Karger, Basel, pp 144–155

    Google Scholar 

  • Winkler K, Bass L, Keiding S, Tygstrup N (1974) The effect of hepatic perfusion on the assessment of kinetic constants. In: Lundquist F, Tygstrup N (eds) Regulation of hepatic metabolism. Munksgaard, Copenhagen, pp 797–807

    Google Scholar 

  • Wolkoff AW, Goresky CA, Sellin J, Gatmaitan S, Arias IM (1979) Role of ligandin in transfer of bilirubin from plasma into liver. Am J Physiol 236: E638–G648

    PubMed  CAS  Google Scholar 

  • Wosilait WD, Garten S (1972) Computation of unbound anticoagulant values in plasma. Res Commun Chem Pathol Pharmacol 3: 285–291

    PubMed  CAS  Google Scholar 

  • Xu X, Pang KS (1989) Hepatic modeling of metabolite kinetics in sequential and parallel pathways: salicylamide and gentisamide metabolism in perfused rat liver. J Pharmacokinet Biopharm 17: 645–671

    PubMed  CAS  Google Scholar 

  • Xu X, Tang BK, Pang KS (1990) Sequential metabolism of salicylamide exclusively to gentisamide-5-glucuronide and not gentisamide sulfate conjugates in the single pass in situ perfused rat liver. J Pharmacol Exp Ther 253: 965–973

    PubMed  CAS  Google Scholar 

  • Xu X, Selick P, Pang KS (1993) Nonlinear protein binding and heterogeneity: effect of drug metabolizing enzyme on hepatic drug removal. J Pharmacokinet Biopharm 21: 43–74

    PubMed  CAS  Google Scholar 

  • Zhao Y, Snel CAW, Mulder GJ, Pang KS (1993) Glutathione conjugation of bromosulfophthalein in perfused rat liver: studies with the multiple indicator dilution technique. Drug Metab Dispos 21: 1070–1078

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pang, K.S., Chiba, M. (1994). Pharmacokinetic Modeling of Drug Conjugates. In: Kauffman, F.C. (eds) Conjugation—Deconjugation Reactions in Drug Metabolism and Toxicity. Handbook of Experimental Pharmacology, vol 112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78429-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78429-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78431-6

  • Online ISBN: 978-3-642-78429-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics