Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 109))

  • 265 Accesses

Abstract

The weight of evidence from primary and secondary prevention clinical trials indicates that reduction of low-density lipoprotein cholesterol (LDLC) levels by diets, drugs, or other means can decrease the incidence of fatal and nonfatal myocardial infarction. A series of angiographic trials have demonstrated that reduced mortality and morbidity from LDL-C reduction are attributable, at least in part, to stabilization and regression of coronary atherosclerosis in both native vascular beds and venous bypass grafts. These studies provide the rationale for treatment of hyperlipoproteinemia with the goal of preventing coronary heart disease. Evidence from human clinical trials is supported by an extensive series of experiments in atherosclerotic animals of many species, including nonhuman primates. This review of treatment rationale summarizes evidence from human mortality and morbidity-based trials, human angiographic trials, and experimental animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong ML, Megan MB (1972) Lipid depletion in atheromatous coronary arteries in rhesus monkeys after regression diets. Circ Res 30: 675–680

    PubMed  CAS  Google Scholar 

  • Armstrong ML, Megan MB (1975) Arterial fibrous proteins in cynomolgus monkeys after atherogenic and regression diets. Circ Res 36: 256–261

    PubMed  CAS  Google Scholar 

  • Armstrong ML, Warner ED et al. (1970) Regression of coronary atheromatosis in rhesus monkeys. Circ Res 27: 59–67

    PubMed  CAS  Google Scholar 

  • Arntzenius AC, Kromhout D et al. (1985) Diet, lipoproteins, and the progression of coronary atherosclerosis. The Leiden Intervention Trial. N Engl J Med 312: 805–811

    Article  PubMed  CAS  Google Scholar 

  • Barndt R JR, Blankenhorn DH et al. (1977) Regression and progression of early femoral atherosclerosis in treated hyperlipoproteinemic patients. Ann Intern Med 86: 139–146

    PubMed  Google Scholar 

  • Basta LL, Williams C et al. (1976) Regression of atherosclerotic stenosing lesions of the renal arteries and spontaneous cure of systemic hypertension through control of hyperlipidemia. Am J Med 61: 420–423

    Article  PubMed  CAS  Google Scholar 

  • Blankenhorn DH, Nessim SA el al. (1987) Beneficial effects of combined colestipol—niacin therapy on coronary atherosclerosis and coronary venous bypass grafts. JAMA 257: 3233–3240

    Article  PubMed  CAS  Google Scholar 

  • Blankenhorn DH, Alaupovic P et al. (1990) Prediction of angiographic change in native human coronary arteries and aortocoronary bypass grafts: lipid and non-lipid factors. Circulation 81: 470–476

    Article  PubMed  CAS  Google Scholar 

  • Brensike JF, Levy RI et al. (1984) Effects of therapy with cholestyramine on progression of coronary arteriosclerosis: results of the NHLBI Type II Coronary Intervention Study. Circulation 69: 313–324

    Article  PubMed  CAS  Google Scholar 

  • Brown G, Albers JJ et al. (1990) Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B. N Engl J Med 323: 1289–1298

    Article  PubMed  CAS  Google Scholar 

  • Buchwald H, Varco RL et al. (1990) Effect of partial ileal bypass surgery on mortality and morbidity from coronary heart disease in patients with hypercholesterolemia. Report of the Program on the Surgical Control of the Hyperlipidemias (POSCH). N Engl J Med 323: 946–955

    Article  PubMed  CAS  Google Scholar 

  • Canner PL, Berge KG et al. (1986) Fifteen year mortality in Coronary Drug Project patients: long-term benefit with niacin. J Am Coll Card 8: 1245–1255

    Article  CAS  Google Scholar 

  • Cashin-Hemphill L, Mack WJ et al. (1990) Beneficial effects of colestipol—niacin on coronary atherosclerosis. A 4-year follow-up. JAMA 264: 3013–3017

    Article  PubMed  CAS  Google Scholar 

  • Clarkson TB, King JS et al. (1973) Pathologic characteristics and composition of diet-aggravated atherosclerotic plaques during “regression”. Exp Mol Pathol 19: 267–283

    Article  PubMed  CAS  Google Scholar 

  • Clarkson TB, Bond MG et al. (1984) A study of atherosclerosis regression in Macaca mulatta: V. Changes in abdominal aorta and carotid and coronary arteries from animals with atherosclerosis induced for 38 months and then regressed for 24 or 48 months at plasma cholesterol concentrations of 300 or 200 mg/dl. Exp Mol Pathol 41: 96–118

    Article  PubMed  CAS  Google Scholar 

  • Cohn K, Sakai FJ et al. (1975) Effect of clofibrate on progression of coronary disease: a prospective angiographic study in man. Am Heart J 89: 591–598

    Article  PubMed  CAS  Google Scholar 

  • Crawford DW, Sanmarco ME et al. (1979) Spatial reconstruction of human femoral atheromata showing regression. Am J Med 66: 784–789

    Article  PubMed  CAS  Google Scholar 

  • Dayton S, Pearce ML et al. (1969) A controlled clinical trial of a diet high in unsaturated fat in preventing complications of atherosclerosis. Circulation 40 [Suppl II]: 1–63

    Google Scholar 

  • DePalma RG, Hubay CA et al. (1970) Progression and regression of experimental atherosclerosis. Surg Gynecol Obstet 131: 633–647

    PubMed  CAS  Google Scholar 

  • DePalma GR, Bellon EM et al. (1977) Approaches to evaluating regression of experimental atherosclerosis. Adv Exp Med Biol 82: 459–470

    PubMed  CAS  Google Scholar 

  • DePalma RG, Klein L et al. (1980) Regression of atherosclerotic plaques in rhesus monkeys. Angiographic, morphologic, and angiochemical changes. Arch Surg 115: 1268–1278

    PubMed  CAS  Google Scholar 

  • Duffield RGM, Miller NE et al. (1983) Treatment of hyperlipidemia retards progression of symptomatic femoral atherosclerosis. A randomized controlled trial. Lancet 1: 639–642

    Article  Google Scholar 

  • Erikson U, Helmius G et al. (1983) Measurement of atherosclerosis by arteriography and microdensitometry. Model and clinical investigations. In: Schettler G, Gotto AM et al. (eds) Atherosclerosis VI. Springer, Berlin Heidelberg New York, p 197

    Google Scholar 

  • Farrar DJ, Green HD et al. (1980) Reduction in pulse wave velocity and improvement of aortic distensibility accompanying regression of atherosclerosis in the rhesus monkey. Circ Res 47: 425–432

    PubMed  CAS  Google Scholar 

  • Frick MH, Elo O et al. (1987) Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med 317: 1237–1245

    Article  PubMed  CAS  Google Scholar 

  • Fritz KE, Augustyn JM et al. (1975) Effect of moderate diet and clofibrate on regression of swine atherosclerosis. Circulation 52: 11–16

    Google Scholar 

  • Fritz KE, Augustyn JM et al. (1976) Regression of advanced atherosclerosis in swine. Arch Pathol Lab Med 100: 380–385

    PubMed  CAS  Google Scholar 

  • Harrison DG, Armstrong ML et al. (1987) Restoration of endothelium-dependent relaxation by dietary treatment of atherosclerosis. J Clin Invest 80: 1808–1811

    Article  PubMed  CAS  Google Scholar 

  • Heistad DD, Breese K et al. (1987) Cerebral vasconstrictor responses to serotonin after dietary treatment of atherosclerosis: implications for transient ischemic attacks. Stroke 18: 1068–1073

    Article  PubMed  CAS  Google Scholar 

  • Hjermann I, Enger SC et al. (1970) The effect of dietary changes on high density lipoprotein cholesterol. The Oslo Study. Am J Med 66: 105–109

    Article  Google Scholar 

  • Horlick K, Katz LN (1949) Retrogression of atherosclerotic lesions on cessation of cholesterol feeding in the chick. J Lab Clin Med 34: 1427

    PubMed  CAS  Google Scholar 

  • Kane JP, Malloy MJ et al. (1990) Regression of coronary atherosclerosis during treatment of familial hypercholesterolemia with combined drug regimens. JAMA 264: 3007–3012

    Article  PubMed  CAS  Google Scholar 

  • Keller C, Spengel FA (1988) Changes of atherosclerosis of the carotid arteries due to severe familial hypercholesterolemia following long-term plasmapheresis, assessed by duplex scan. Klin Wochenschr 66: 149–152

    Article  PubMed  CAS  Google Scholar 

  • Kramsch DM, Aspen AJ et al. (1981a) Reduction of coronary atherosclerosis by moderate conditioning exercise in monkeys on an atherogenic diet. N Engl J Med 305: 1483–1489

    Article  CAS  Google Scholar 

  • Kramsch DM, Aspen AJ et al. (1981b) Atherosclerosis: prevention by agents not affecting abnormal levels of blood lipids. Science 213: 1511–1512

    Article  CAS  Google Scholar 

  • Kuo PT, Hayase K et al. (1979) Use of combined diet and colestipol in long-term (71 years) treatment of patients with type II hyperlipoproteinemia. Circulation 59: 199–211

    PubMed  CAS  Google Scholar 

  • Leren P (1970) The Oslo diet-heart study: eleven year report, Circulation 42: 935–942

    PubMed  CAS  Google Scholar 

  • Levy RI, Brensike JF et al. (1984) The influence of changes in lipid values induced by cholestyramine and diet on progression of coronary artery disease: results of NHLBI Type II Coronary Intervention Study. Circulation 69: 325–337

    Article  PubMed  CAS  Google Scholar 

  • Lipid Research Clinics Coronary Primary Prevention Trial (1984) Results. II. The relationship of reduction in incidence of coronary heart disease to cholesterol lowering. JAMA 251: 365–374

    Article  Google Scholar 

  • Malinow MR (1980) Atherosclerosis. Regression in nonhuman primates. Circulation 46: 311–320

    CAS  Google Scholar 

  • Malinow MR, McLaughlin P et al. (1978a) Effect of alfalfa meal on shrinkage (regression) of atherosclerotic plaques during cholesterol feeding in monkeys. Atherosclerosis 30: 27–43

    Article  CAS  Google Scholar 

  • Malinow MR, McLaughlin P et al. (1978b) Treatment of established atherosclerosis during cholesterol feeding in monkeys. Atherosclerosis 31: 185–193

    Article  CAS  Google Scholar 

  • Mendelsohn D, Mendelsohn L (1989) Effect of polyunsaturated fat on regression of atheroma in the non-human primate. S Afr Med J 76: 371–373

    PubMed  CAS  Google Scholar 

  • Morin RJ, Bernick L et al. (1964) Effects of essential fatty acid deficiency and supplementation of atheroma formation and regression. J Atherosler Res 4: 387

    Article  CAS  Google Scholar 

  • Nash DT, Gensini G et al. (1982) Effect of lipid-lowering therapy on the progression of coronary atherosclerosis assessed by scheduled repetitive coronary arteriography. Int J Cardiol 2: 43–55

    Article  PubMed  CAS  Google Scholar 

  • Newcastle Study (1971) Trial of clofibrate in the treatment of ischaemic heart disease: five-year study by a group of physicians of the Newcastle upon Tyne region. BMJ 4: 767–775

    Article  Google Scholar 

  • Nikkila EA, Viikinkoski P et al. (1984) Prevention of progression of coronary atherosclerosis by treatment of hyperlipidaemia: a seven year prospective angiographic study. Br Med J [Clin Res] 289 (6439): 220–223

    Article  CAS  Google Scholar 

  • Oliver MF, Heady JA et al. (1978) A cooperative trial in the primary prevention of ischemic heart disease using clofibrate. Br Heart J 40: 1069–1118

    Article  Google Scholar 

  • Ornish D, Brown SE et al. (1990) Can lifestyle changes reverse coronary heart disease? The Lifestyle Heart Trial. Lancet 336: 129–133

    Article  PubMed  CAS  Google Scholar 

  • Ost RC, Stenson S (1967) Regression of peripheral atherosclerosis during therapy with high doses of nicotinic acid. Scand J Clin Lab Invest [Suppl] 99: 241–245

    CAS  Google Scholar 

  • Portman OW, Alexander M et al. (1967) Nutritional control of arterial lipid composition on squirrel monkeys. Major ester classes and types of phospholipids. J Nutr 91: 35

    PubMed  CAS  Google Scholar 

  • Rafflenbeul W, Smith LR et al. (1979) Quantitative coronary arteriography. Coronary anatomy of patients with unstable angina pectoris reexamined 1 year after optimal medical therapy. Am J Cardiol 43: 699–707

    Article  PubMed  CAS  Google Scholar 

  • Research Committee (1965) Low-fat diet in myocardial infarction: a controlled trial. Lancet I: 501–504

    Google Scholar 

  • Research Committee to the Medical Research Council (1968) Controlled trial of soya-bean oil in myocardial infarction. Lancet 1: 693–700

    Google Scholar 

  • Rose GA, Thomson WB et al. (1965) Corn oil in the treatment of ischaemic heart disease. BMJ 1: 1531–1533

    Article  PubMed  CAS  Google Scholar 

  • Roth D, Kostuk WJ (1980) Noninvasive and invasive demonstration of spontaneous regression of coronary artery disease. Circulation 62: 888–896

    PubMed  CAS  Google Scholar 

  • Schettler G (1979) Cardiovascular diseases during and after World War II: a comparison of the Federal Republic of Germany with other European countries. Prey Med 8: 581

    Article  CAS  Google Scholar 

  • Scottish Society Study (1971) Ischaemic heart disease: a secondary prevention trial using clofibrate. BMJ 4: 775–784

    Article  Google Scholar 

  • Srinivasan SR, Patton D et al. (1980) Lipid changes in atherosclerotic aortas of Macaca fascicularis after various regression regimens. Atherosclerosis 37: 591–601

    Article  PubMed  CAS  Google Scholar 

  • Stary HC (1972) Progression and regression of experimental atherosclerosis in rhesus monkeys. In: Goldsmith EF, Morr-Hankowsky J (eds) Medical primatology. Karger, Basel, p 356

    Google Scholar 

  • Stein EA, Adolph R et al. (1986) Nonprogression of coronary artery atherosclerosis in homozygous familial hypercholesterolemia after 31 months of repetitive plasma exchange. Clin Cardiol 9: 115–119

    Article  PubMed  CAS  Google Scholar 

  • Subbiah MT, Dicke BA et al. (1978) Regression of naturally occurring atherosclerotic lesions in pigeon aorta by intestinal bypass surgery. Atherosclerosis 31: 117

    Article  PubMed  CAS  Google Scholar 

  • Terry EN, Rouen LR et al. (1976) Attempts to delay progression in occlusive atherosclerosis. Ann NY Acad Sci 275: 379–385

    Article  PubMed  CAS  Google Scholar 

  • Thompson GR, Myant NB et al. (1980) Assessment of long-term plasma exchange for familial hypercholesterolaemia. Br Heart J 43: 680–688

    Article  PubMed  CAS  Google Scholar 

  • Tucker CF, Catsulis C et al. (1971) Regression of early cholesterol-induced aortic lesions in rhesus monkeys. Am J Pathol 65: 494–502

    Google Scholar 

  • Vesselinovitch D, Wissler RW et al. (1976) Reversal of advanced atherosclerosis in rhesus monkeys: I. Light-microscopic Studies. Atherosclerosis 23: 155–176

    Article  Google Scholar 

  • Vesselinovitch D, Wissler RW et al. (1978) The effect of diets with or without cholestryamine on the lesion components of atherosclerotic plaques. Fed Proc 37: 835

    Google Scholar 

  • Wilens SL (1947) The resorption of arterial atheromatous deposits in wasting disease. Am J Pathol 23: 793–804

    PubMed  CAS  Google Scholar 

  • Wissler RW, Vesselinovitch D et al. (1975) Regression of severe atherosclerosis in cholestryamine treated rhesus monkeys with or without a low fat, low-cholesterol diet. Circulation 52:15–16

    Google Scholar 

  • Woodhill JM, Palmer AJ et al. (1978) Low fat, low cholesterol diet in secondary prevention of coronary heart disease. Adv Exp Med Biol 109: 317–330

    PubMed  CAS  Google Scholar 

  • Yokoyama S, Yamamoto A et al. (1987) LDL-apheresis; potential procedure for prevention and regression of atheromatous vascular lesion. Jpn Circ J 51: 1116–1122

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blankenhorn, D.H., Hodis, H.N. (1994). Rationale to Treat. In: Schettler, G., Habenicht, A.J.R. (eds) Principles and Treatment of Lipoprotein Disorders. Handbook of Experimental Pharmacology, vol 109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78426-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78426-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78428-6

  • Online ISBN: 978-3-642-78426-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics