Skip to main content

Lipoprotein Receptors

  • Chapter
  • 265 Accesses

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 109))

Abstract

Polypeptide-binding receptors in mammalian plasma membranes may be divided into two categories, class I and class II receptors (Kaplan 1981). Class II receptors mediate the cellular uptake and delivery of ligands to intracellular sites, generally to lysosomes for degradation, and then recycle to the cell surface. In contrast, class I receptors are characterized by their ability to mediate signal transduction. Lipoprotein receptors fall mainly into the class II category. Since the low-density lipoprotein (LDL) receptor was cloned and sequenced in 1984, the structures of two other receptors have also been determined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aalto-Setala K, Helve E, Kovanen PT, Kontula K (1989) Finnish type of low density lipoprotein receptor gene mutation (FH-Helsinki) deletes exons encoding the carboxy-terminal part of the receptor and creates an internalization-defective phenotype. J Clin Invest 84:499–505

    PubMed  CAS  Google Scholar 

  • Akeson AL, Schroeder K, Woods C, Schmidt CJ, Jones WD (1991) Suppression of interleukin-lß and LDL scavenger receptor expression in macrophages by a selective protein kinase C inhibitor. J Lipid Res 32:1699–1707

    PubMed  CAS  Google Scholar 

  • Arai H, Kita T, Yokode M, Narumiya S, Kawai C (1989) Multiple receptors for modified low density lipoproteins in mouse peritoneal macrophages: different uptake mechanisms for acetylated and oxidized low density lipoproteins. Biochem Biophys Res Commun 159:1375–1382

    PubMed  CAS  Google Scholar 

  • Asaoka H, Emi M, Mukai T et al. (1991) Human scavenger receptor gene: its genomic structure and promoter region. Circulation 84(4) [Suppl 2]:II 230 (A914)

    Google Scholar 

  • Bachorik PS, Franklin FA, Virgil DG, Kwiterovich Jr PO (1982) High-affinity uptake and degradation of apolipoprotein E free high-density lipoprotein and low-density lipoprotein in cultured porcine hepatocytes. Biochemistry 21:5675–5684

    PubMed  CAS  Google Scholar 

  • Barber DL, Sanders EJ, Aebersold R, Schneider WJ (1991) The receptor for yolk lipoprotein deposition in the chicken oocyte. J Biol Chem 266:18761–18770

    PubMed  CAS  Google Scholar 

  • Basu SK, Goldstein JL, Anderson RGW, Brown MS (1981) Monensin interrupts the recycling of low density lipoprotein receptors in human fibroblasts. Cell 24:493–502

    PubMed  CAS  Google Scholar 

  • Beisiegel U, Weber W, Ihrke G, Herz J, Stanley KK (1989) The LDL-receptorrelated protein, LRP, is an apolipoprotein E-binding protein. Nature 341: 162–164

    PubMed  CAS  Google Scholar 

  • Beisiegel U, Weber W, Bengtsson-Olivecrona G (1991) Lipoprotein lipase enhances the binding of chylomicrons to low density lipoprotein receptor-related protein. Proc Natl Acad Sci USA 88:8342–8346

    PubMed  CAS  Google Scholar 

  • Bilheimer DW, Goldstein JL, Grundy SM, Brown MS (1975) Reduction in cholesterol and low density lipoprotein synthesis after portacaval shunt surgery in a patient with homozygous familial hypercholesterolemia. J Clin Invest 56:1420

    PubMed  CAS  Google Scholar 

  • Bilheimer DW, Grundy SM, Brown MS, Goldstein JL (1983) Mevinolin stimulates receptor-mediated clearance of low density lipoprotein from plasma in familial hypercholesterolaemia heterozygotes. Proc Natl Acad Sci USA 80:4124

    PubMed  CAS  Google Scholar 

  • Bilheimer DW, Goldstein JL, Grundy SM, Starzl TE, Brown MS (1984) Liver transplantation to provide low-density-lipoprotein receptors and lower plasma cholesterol in a child with homozygous familial hypercholestrertolemia. N Engl J Med 311:1658–1664

    PubMed  CAS  Google Scholar 

  • Bilheimer DW, East C, Grundy SM, Nora JJ (1985) II. Clinical studies in a kindred with a kinetic LDL receptor mutation causing familial hypercholesterolemia. Am J Med Genet 22:593–598

    PubMed  CAS  Google Scholar 

  • Brown MS, Goldstein JL (1983) Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu Rev Biochem 52:223–261

    PubMed  CAS  Google Scholar 

  • Brown MS, Goldstein JL (1986) A receptor-mediated pathway for cholesterol homeostasis. Science 232:34–37

    PubMed  CAS  Google Scholar 

  • Brown MS, Herz J, Kowal RC, Goldstein JL (1991) The low-density lipoprotein receptor-related protein: double agent or decoy? Curr Opin Lipidol 2:65–72

    CAS  Google Scholar 

  • Carew TE, Schwenke DC, Steinberg D (1987) Antiatherogenic effect of probucol unrelated to its hypocholesterolemic effect: evidence that antioxidants in vivo can selectively inhibit low density lipoprotein degradation in macrophage-rich fatty streaks and slow the progression of atherosclerosis in the Watanabe heritable hyperlipidemic rabbit. Proc Natl Acad Sci USA 84:7725–7729

    PubMed  CAS  Google Scholar 

  • Casali P, Notkins AL (1989) CD5+ B lymphocytes, polyreactive antibodies and the human B-cell repertoire. Immunol Today 10:364–368

    PubMed  CAS  Google Scholar 

  • Casciola LAF, van der Westhuyzen DR, Gevers W, Coetzee GA (1988) Low density lipoprotein receptor degradation is influenced by a mediator protein(s) with a rapid turnover rate, but is unaffected by receptor up-or down-regulation. J Lipid Res 29:1481–1488

    PubMed  CAS  Google Scholar 

  • Casciola LAF, Grant KI, Gevers W, Coetzee GA, van der Westhuyzen DR (1987) Low-density-lipoprotein receptors in human fibroblasts are not degraded in lysosomes. Biochem J 262:681–683

    Google Scholar 

  • Chen WJ, Goldstein JL, Brown MS (1990) NPXY, a sequence often found in cytoplasmic tails, is required for coated pit-mediated internalization of the low density lipoprotein receptor. J Biol Chem 265:3116–3123

    PubMed  CAS  Google Scholar 

  • Collawn JF, Stangel M, Kuhn LA, Esekogwu V, Jing S, Trowbridge IS, Tainer JA (1990) Transferrin receptor internalization sequence YXRF implicates a tight turn as the structural recognition motif for endocytosis. Cell 63:1061–1072

    PubMed  CAS  Google Scholar 

  • Cummings RD, Kornfeld S, Schneider WJ, Hobgood KK, Tolleshaug H, Brown MS, Goldstein JL (1983) Biosynthesis of the N- and 0-linked oligosaccharides of the low density lipoprotein receptor. J Biol Chem 258:15261–15273

    PubMed  CAS  Google Scholar 

  • Cuthbert JA, Russell DW, Lipsky PE (1989) Regulation of low density lipoprotein receptor gene expression in human lymphocytes. J Biol Chem 264:1298–1304

    PubMed  CAS  Google Scholar 

  • Davis CG, Goldstein JL, Südhof TC, Anderson RGW, Russell DW, Brown MS (1987a) Acid-dependent ligand dissociation and recycling of LDL receptor mediated by growth factor homology region. Nature 326:760–765

    CAS  Google Scholar 

  • Davis CG, Van Driel IR, Russell DW, Brown MS, Goldstein JL (1987b) The low density lipoprotein receptor. Identification of amino acids in cytoplasmic domain required for rapid endocytosis. J Biol Chem 262:4075–4082

    CAS  Google Scholar 

  • Dawson PA, Hofmann SL, van der Westhuyzen DR, Südhof TC, Brown MS, Goldstein JL (1988) Sterol-dependent repression of low density lipoprotein receptor promoter mediated by 16-base pair sequence adjacent to binding site for transcription factor Sp1. J Biol Chem 263:3372–3379

    PubMed  CAS  Google Scholar 

  • Dawson PA, van der Westhuyzen DR, Goldstein JL, Brown MS (1989) Purification of oxysterol binding protein from hamster liver cytosol. J Biol Chem 264:9046–9052

    PubMed  CAS  Google Scholar 

  • Edge SB, Hoeg JM, Triche T, Schneider PD, Brewer HB (1986) Cultured human hepatocytes. Evidence for metabolism of low density lipoproteins by a pathway independent of the classical low density lipoprotein receptor. J Biol Chem 261:3800–3806

    PubMed  CAS  Google Scholar 

  • Esser VB, Limbird LE, Brown MS, Goldstein JL, Russell DW (1988) Mutational analysis of the ligand binding domain of the low density lipoprotein receptor. J Biol Chem 263:13282–13290

    PubMed  CAS  Google Scholar 

  • Filipovic I, Buddecke E (1986) Calmodulin antagonists stimulate LDL receptor synthesis in human skin fibroblasts. Biochim Biophys Acta 876:124–132

    PubMed  CAS  Google Scholar 

  • Fourie AM, Coetzee GA, Gevers W, van der Westhuyzen DR (1988) Two mutant low-density-lipoprotein receptors in Afrikaners slowly processed to surface forms exhibiting rapid degradation or functional heterogeneity. Biochem J 255:411–415

    PubMed  CAS  Google Scholar 

  • Freeman M, Ashkenas J, Rees DJG, Kingsley DM, Copeland NG, Jenkins NA, Krieger M (1990) An ancient, highly conserved family of cysteine-rich protein domains revealed by cloning type I and type II murine macrophage scavenger receptors. Proc Natl Acad Sic USA 87:8810–8814

    CAS  Google Scholar 

  • Freeman M, Ekkel Y, Rohrer L, Penman M, Freedman NJ, Chisolm GM, Krieger M (1991) Expression of type I and type II bovine scavenger receptors in Chinese hamster ovary cells: Lipid droplet accumulation and nonreciprocal cross competition by acetylated and oxidized low density lipoprotein. Proc Natl Acad Sci USA 88:4931–4935

    PubMed  CAS  Google Scholar 

  • Fuhrman B, Brook GJ, Aviram M (1991) Activated platelets secrete a protein-like factor that stimulates oxidized-LDL receptor activity in macrophages. J Lipid Res 32:1113–1123

    PubMed  CAS  Google Scholar 

  • Glomset JA (1968) The plasma lecithin: cholesterol acyltransferase reaction. J Lipid Res 9:155–167

    PubMed  CAS  Google Scholar 

  • Goldstein JL, Brown MS (1989) Familial hypercholesterolemia. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic basis of inherited disease. McGraw-Hill, New York, pp 1215–1250

    Google Scholar 

  • Goldstein JL, Anderson RGW, Brown MS (1979a) Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature 279:679–685

    CAS  Google Scholar 

  • Goldstein JL, Ho YK, Basu SK, Brown MS (1979b) Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci USA 76:333–337

    CAS  Google Scholar 

  • Goldstein JL, Brown MS, Anderson RGW, Russell DW, Schneider WJ (1985) Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Annu Rev Cell Biol 1:1–39

    PubMed  CAS  Google Scholar 

  • Golos TG, Strauss JF, Miller WL (1987) Regulation of low density lipoprotein receptor and cytochrome P-450scc mRNA levels in human granulosa cells. J Steroid Biochem 27:767–773

    PubMed  CAS  Google Scholar 

  • Grant KI, Casciola LAF, Coetzee GA, Sanan DA, Gevers W, van der Westhuyzen DR (1990) Ammonium chloride causes reversible inhibition of low density lipoprotein receptor recycling and accelerates receptor degradation. J Biol Chem 265:4041–4047

    PubMed  CAS  Google Scholar 

  • Grundy SM, Mok HYI (1976) Chylomicron clearance in normal and hyperlipidemic man. Metab Clin Exp 25:1225–1239

    PubMed  CAS  Google Scholar 

  • Haberland ME, Fong D, Cheng L (1988) Malondialdehyde-altered protein occurs in atheroma of Watanabe heritable hyperlipidemic rabbits. Science 241:215–218

    PubMed  CAS  Google Scholar 

  • Hampton RY, Golenbock DT, Penman M, Krieger M, Raetz CRH (1991) Recognition and plasma clearance of endotoxin by scavenger receptors. Nature 352:342–344

    PubMed  CAS  Google Scholar 

  • Havel RJ, Chao Y-S, Windler EE, Kotite L, Guo LSS (1980) Isoprotein specificity in the hepatic uptake of apolipoprotein E and the pathogenesis of familial dysbetalipoproteinemia. Proc Natl Acad Sci USA 77:4349–4353

    PubMed  CAS  Google Scholar 

  • Hayashi K, Dojo S, Hirata Y, Ohtani H, Nakashima K, Nishio E, Kurushima H, Saeki M, Kajiyama G (1991) Metabolic changes in LDL receptors and an appearance of scavenger receptors after phorbol ester-induced differentiation of U937 cells. Biochim Biophys Acta 1082:152–160

    PubMed  CAS  Google Scholar 

  • Herz J, Hamann U, Rogne S, Myklebost O, Gausepohl H, Stanley KK (1988) Surface location and high affinity for calcium of a 500 kD liver membrane protein closely related to the LDL-receptor suggest a physiological role as lipoprotein receptor. EMBO J 7:4119–4127

    PubMed  CAS  Google Scholar 

  • Herz J, Kowal RC, Goldstein JL, Brown MS (1990a) Proteolytic processing of the 600 kD low density lipoprotein receptor related protein (LRP) occurs in a trans-Golgi compartment. EMBO J 9:1769–1776

    CAS  Google Scholar 

  • Herz J, Kowal RC, Ho YK, Brown MS, Goldstein JL (1990b) Low density lipoprotein receptor-related protein mediates endocytosis of monoclonal antibodies in cultured cells and rabbit liver. J Biol Chem 265:21355–21362

    CAS  Google Scholar 

  • Herz J, Goldstein JL, Strickland DK, Ho YK, Brown MS (1991) 39-kDa protein modulates binding of ligands to low density lipoprotein receptor-related protein/ a2-macroglobulin receptor. J Biol Chem 266:21232–21238

    PubMed  CAS  Google Scholar 

  • Hobbs HH, Brown MS, Russell DW, Davignon J, Goldstein JL (1987) Deletion in the gene for the low-density-lipoprotein receptor in a majority of French Canadians with familial hypercholesterolemia. N Engl J Med 317:734–737

    PubMed  CAS  Google Scholar 

  • Hobbs HH, Leitersdorf E, Leffert CC, Cryer DR, Brown MS, Goldstein JL (1989) Evidence for a dominant gene that suppresses hypercholesterolemia in a family with defective low density lipoprotein receptors. J Clin Invest 84:656–664

    PubMed  CAS  Google Scholar 

  • Hobbs HH, Russell DW, Brown MS, Goldstein JL (1990) The LDL receptor locus in familial hypercholesterolemia. Mutational analysis of a membrane protein. Annu Rev Genet 24:133–170

    PubMed  CAS  Google Scholar 

  • Hoeg JM, Starzl TE, Brewer HB Jr (1987) Liver transplantation for treatment of cardiovascular disease: comparison with medication and plasma exchange in homozygous familial hypercholesterolemia. Am J Cardiol 59:705–707

    PubMed  CAS  Google Scholar 

  • Hoover GA, McCormick S, Kalant N (1988) Interaction of native and cell-modified low density lipoprotein with collagen gel. Arteriosclerosis 8:525–534

    PubMed  CAS  Google Scholar 

  • Hussain MM, Mahley RW, Boyles JK, Fainaru M, Brecht WJ, Lindquist P (1989) Chylomicron—chylomicron remnant clearance by liver and bone marrow in rabbits. Factors that modify tissue-specific uptake. J Biol Chem 264:9571–9582

    PubMed  CAS  Google Scholar 

  • Innerarity TL (1991) The low-density lipoprotein receptor. Curr Opin Lipidol 2: 156–161

    CAS  Google Scholar 

  • Johnson WJ, Mahlberg FH, Rothblat GH, Phillips MC (1991) Cholesterol transport between cells and high-density lipoproteins. Biochim Biophys Acta 1085: 273–298

    PubMed  CAS  Google Scholar 

  • Jouni ZE, McNamara DJ (1991) Lipoprotein receptors of HL-60 macrophages: effect of differentiation with tetramyristic phorbol acetate and 1,25-dihydroxyvitamin D3. Arterioscler Thromb 11:995–1006

    PubMed  CAS  Google Scholar 

  • Kaplan J (1981) Polypeptide-binding membrane receptors: analysis and classification. Science 212:14–20

    PubMed  CAS  Google Scholar 

  • Kita T, Goldstein JL, Brown MS, Watanabe Y, Hornick CA, Havel RJ (1982) Hepatic uptake of chylomicron remnants in WHHL Rabbits: a mechanism genetically distinct from the low density lipoprotein receptor. Proc Natl Acad Sci USA 79:3623–3627

    PubMed  CAS  Google Scholar 

  • Kita T, Nagano Y, Yokode M, Ishii K, Kume N, Ooshima A, Yoshida H, Kawai C (1987) Probucol prevents the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbit, an animal model for familial hypercholesterolemia. Proc Natl Acad Sci USA 84:5928–5931

    PubMed  CAS  Google Scholar 

  • Kodama T, Reddy P, Kishimoto C, Krieger M (1988) Purification and characterization of a bovine acetyl low density lipoprotein receptor. Proc Natl Acad Sci USA 85:9238–9242

    PubMed  CAS  Google Scholar 

  • Kodama T, Freeman M, Rohrer L, Zabrecky J, Matsudaira P, Krieger M (1990) Type I macrophage scavenger receptor contains a-helical and collagen-like coiled coils. Nature 343:531–535

    PubMed  CAS  Google Scholar 

  • Kodama T, Doi T, Matsumoto A et al. (1991) The C-terminal region of a collagen-like domain containing a cluster of basic amino acids mediates binding of modified low density lipoproteins by macrophage scavenger receptors. Circulation 84(4) [Suppl 21:II 229 (A912)

    Google Scholar 

  • Kowal RC, Herz J, Weisgraber KH, Mahley RW, Brown MS, Goldstein JL (1990) Opposing effects of apolipoproteins E and C on lipoprotein binding to low density lipoprotein receptor-related protein. J Biol Chem 265:10771–10779

    PubMed  CAS  Google Scholar 

  • Kristensen T, Moestrup SK, Gliemann J, Bendtsen L, Sand O, Sottrup-Hensen L (1990) Evidence that the newly cloned low-density-lipoprotein receptor related protein (LRP) is the a2-macroglobulin receptor. FEBS Lett 276:151–155

    PubMed  CAS  Google Scholar 

  • Kume N, Arai H, Kawai C, Kita T (1991) Receptors for modified low-density lipoproteins on human endothelial cells: different recognition for acetylated low-density lipoprotein and oxidized low-density lipoprotein. Biochim Biophys Acta 1091:63–67

    PubMed  CAS  Google Scholar 

  • Kurihara Y, Matsumoto A, Itakura H, Kodama T (1991) Macrophage scavenger receptors. Curr Opin Lipidol 2:295–300

    CAS  Google Scholar 

  • Kuwano M, Seguchi T, Ono M (1991) Glycosylation mutations of serine/threoninelinked oligosaccharides in low-density lipoprotein receptor: indispensable roles of 0-glycosylation. J Cell Sci 98:131–134

    PubMed  CAS  Google Scholar 

  • Lehrman MA, Schneider WJ, Brown MS, Davis CG, Elhammer A et al. (1987) The Lebanese allele at the low density lipoprotein receptor locus: nonsense mutation produces truncated receptor that is retained in endoplasmic reticulum. J Biol Chem 262:401–410

    PubMed  CAS  Google Scholar 

  • Leitersdorf E, Chakravarti A, Hobbs HH (1989a) Polymorphic DNA haplotypes at the LDL receptor locus. Am J Hum Genet 44:409–421

    CAS  Google Scholar 

  • Leitersdorf E, van der Westhuyzen DR, Coetzee GA, Hobbs HH (1989b) Two common low density lipoprotein receptor gene mutations cause familial hypercholesterolemia in Afrikaners. J Clin Invest 84:954–961

    CAS  Google Scholar 

  • Leitersdorf E, Tobin EJ, Davignon J, Hobbs HH (1990) Common low-density lipoprotein receptor gene mutations in the French Canadian population. J Clin Invest 85:1014–1023

    PubMed  CAS  Google Scholar 

  • Lund H, Takahashi K, Hamilton RL, Havel RJ (1989) Lipoprotein binding and endosomal itinerary of the low density lipoprotein receptor-related protein in rat liver. Proc Natl Acad Sci USA 86:9318–9322

    PubMed  CAS  Google Scholar 

  • Mabuchi H, Sakai T, Sakai Y, Yoshimura A, Watanabe A, Bakasugi T, Koizumi J, Takeda R (1983) Reduction of serum cholesterol in heterozygous proteins with familial hypercholesterolemia: additive effects of compactin and cholestyramine. N Engl J Med 308:609

    PubMed  CAS  Google Scholar 

  • Mahlberg FH, Glick JM, Lund-Katz S, Rothblat GH (1991) Influence of apolipoproteins AI, AII, and C on the metabolism of membrane and lysosomal cholesterol in macrophages. J Biol Chem 266:19930–19937

    PubMed  CAS  Google Scholar 

  • Mahley RW, Hussain MM (1991) Chylomicron and chylomicron remnant catabolism. Curr Opin Lipidol 2:170–176

    CAS  Google Scholar 

  • Mahley RW, Innerarity TL, Rall SC Jr, Weisgraber KH, Taylor JM (1990) Apolipoprotein E: genetic variants provide insights into its structure and function. Curr Opin Lipidol 1:87–95

    Google Scholar 

  • Malden LT, Chait A, Raines EW, Ross R (1991) The influence of oxidatively modified low density lipoproteins on expression of platelet-derived growth factor by human monocyte-derived macrophages. J Biol Chem 266:13901–13907

    PubMed  CAS  Google Scholar 

  • Marazziti D, Eggertsen G, Fey GH, Stanley KK (1988) Relationships between the gene and protein structure in human complement component C9. Biochemistry 27:6529–6534

    PubMed  CAS  Google Scholar 

  • Matsumoto A, Naito M, Itakura H et al. (1990) Human scavenger receptors: primary structure, expression and localization in atherosclerotic lesions. Proc Natl Acad Sci USA 87:9133–9137

    PubMed  CAS  Google Scholar 

  • Mazière C, Mazière JC, Salmon S et al. (1988) Cyclic AMP decreases LDL catabolism and cholesterol synthesis in the human hepatoma line Hep G2. Biochem Biophys Res Commun 156:424–431

    PubMed  Google Scholar 

  • Mehta KD, Chen WJ, Goldstein JL, Brown MS (1991a) The low density lipoprotein receptor in Xenopus laevis: I. Five domains that resemble the human receptor. J Biol Chem 266:10406–10414

    CAS  Google Scholar 

  • Mehta KD, Brown MS, Bilheimer DW, Goldstein JL (1991b) The low density lipoprotein receptor in Xenopus laevis: II. Feedback repression mediated by conserved sterol regulatory element. J Biol Chem 266:10415–10419

    CAS  Google Scholar 

  • Meiner V, Landsberger D, Berkman N, Reshef A, Segal P, Seftel HC, van der Westhuyzen DR, Jeenah MS, Coetzee GA, Leitersdorf E (1991) A common Lithuanian mutation causing familial hypercholesterolemia in Ashkenazi Jews. Am J Hum Genet 49:443–449

    PubMed  CAS  Google Scholar 

  • Mendel CM, Kunitake ST (1988) Cell-surface binding sites for high density lipoproteins do not mediate efflux of cholesterol from human fibroblasts in tissue culture. J Lipid Res 29:1171–1178

    PubMed  CAS  Google Scholar 

  • Mendel CM, Kunitake ST, Kane JP, Kempner ES (1988) Radiation inactivation of binding sites for high density lipoproteins in human fibroblast membranes. J Biol Chem 263:1314–1319

    PubMed  CAS  Google Scholar 

  • Mendez AJ, Oram JF, Bierman EL (1991) Protein kinase C as a mediator of high density lipoprotein receptor-dependent efflux of intracellular cholesterol. J Biol Chem 266:10104–10111

    PubMed  CAS  Google Scholar 

  • Miyake Y, Tajima S, Funahashi T, Yamamoto A (1989) Analysis of a recycling-impaired mutant of low density lipoprotein receptor in familial hypercholesterolemia. J Biol Chem 264:16584–16590

    PubMed  CAS  Google Scholar 

  • Moulton KS, Wu H, Parthasarathy S, Glass CK (1991) Isolation and characterization of the acetylated-LDL receptor promoter. Circulation 84(4) [Suppl 21:II 230 (A913)

    Google Scholar 

  • Nagelkerke JF, Barto KP, van Berkel TJC (1983) In vivo and in vitro uptake and degradation of acetylated low density lipoprotein by rat liver endothelial, Kupffer, and parenchymal cells. J Biol Chem 258:12221–12227

    PubMed  CAS  Google Scholar 

  • Oliver CN, Ahn BW, Moerman EJ, Goldstein S, Stadtman ER (1987) Age-related changes in oxidized proteins. J Biol Chem 262:5488–5491

    PubMed  CAS  Google Scholar 

  • Oram JF (1990) Cholesterol trafficking in cells. Curr Opin Lipidol 1:416–421

    Google Scholar 

  • Oram JF, Mendez AJ, Slotte JP, Johnson TF (1991) High density lipoprotein apolipoproteins mediate removal of sterol from intracellular pools but not from plasma membranes of cholesterol-loaded fibroblasts. Arterioscler Thromb 11:403–414

    PubMed  CAS  Google Scholar 

  • Packard CJ, Demant T, Shepherd J (1990) Genetics and apolipoprotein B metabolism. In: Lenfant C et al. (eds) Biotechnology of dyslipoproteinemias: applications in diagnosis and control. Raven, New York, pp 19–25

    Google Scholar 

  • Pearse BMF (1988) Receptors compete for adaptors found in plasma membrane coated pits. EMBO J 7:3331–3336

    PubMed  CAS  Google Scholar 

  • Penman M, Lux A, Freedman NJ, Rohrer L, Ekkel Y, McKinstry H, Resnick D, Krieger M (1991) The Type I and Type II bovine scavenger receptors expressed in Chinese hamster ovary cells are trimeric proteins with collagenous triple helical domains comprising noncovalently associated monomers and cys83disulfide-linked dimers. J Biol Chem 266:23985–23993

    PubMed  CAS  Google Scholar 

  • Philips NC, Johnson WJ, Rothblat GH (1987) Mechanisms and consequences of cellular cholesterol exchange and transfer. Biochim Biophys Acta 906:223–276

    Google Scholar 

  • Pitas RE (1990) Expression of the acetyl low density lipoprotein receptor by rabbit fibroblasts and smooth muscle cells: up-regulation by phorbol esters. J Biol Chem 265:12722–12727

    PubMed  CAS  Google Scholar 

  • Pitas RE, Innerarity TL, Arnold KS, Mahley RW (1979) Rate and equilibrium constants for binding of apo-E HDLG (a cholesterol-induced lipoprotein) and low density lipoproteins to human fibroblasts: evidence for multiple receptor binding of apo-E HDLG. Proc Natl Acad Sci USA 76:2311–2315

    PubMed  CAS  Google Scholar 

  • Pitas RE, Boyles J, Mahley RW, Bissell DM (1985) Uptake of chemically modified low density lipoproteins in vivo is mediated by specific endothelial cells. J Cell Biol 100:103–117

    PubMed  CAS  Google Scholar 

  • Pittman RC, Knecht TP, Rosenbaum MS, Taylor CA Jr (1987a) A nonendocytotic mechanism for the selective uptake of high density lipoprotein-associated cholesterol esters. J Biol Chem 262:2443–2450

    CAS  Google Scholar 

  • Pittman RC, Glass CK, Atkinson D, Small DM (1987b) Synthetic high density lipoprotein particles: application to studies of the apoprotein specificity for selective uptake of cholesterol esters. J Biol Chem 262:2435–2442

    CAS  Google Scholar 

  • Raychowdhury R, Niles JL, McCluskey RT, Smith JA (1989) Autoimmune target in Heymann nephritis is a glycoprotein with homology to the LDL receptor. Science 244:1163–1166

    PubMed  CAS  Google Scholar 

  • Reagan JW Jr, Miller LR, Clair RWS (1990) In vivo clearance of low density lipoprotein in pigeons occurs by a receptor-like mechanism that is not down-regulated by cholesterol feeding. J Biol Chem 265:9381–9391

    PubMed  CAS  Google Scholar 

  • Reichl D, Miller NE (1986) The anatomy and physiology of reverse cholesterol transport. Clin Sci 70:221–231

    PubMed  CAS  Google Scholar 

  • Rideout WM, Coetzee GA, Olumi AF, Jones PA (1990) 5-Methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes. Science 249:1288–1290

    PubMed  CAS  Google Scholar 

  • Rohrer L, Freeman M, Kodama T, Penman M, Krieger M (1990) Coiled-coil fibrous domains mediate ligand binding by macrophage scavenger receptor type II. Nature 343:570–572

    PubMed  CAS  Google Scholar 

  • Rosenfeld ME (1991) Oxidized LDL affects multiple atherogenic cellular responses. Circulation 83:2137–2140

    PubMed  CAS  Google Scholar 

  • Rubinsztein DC, Cohen JC, Berger GM, van der Westhuyzen DR, Coetzee GA, Gevers W (1990) Chylomicron remnant clearance from the plasma is normal in familial hypercholesterolemic homozygotes with defined receptor defects. J Clin Invest 86:1306–1312

    PubMed  CAS  Google Scholar 

  • Russell DW, Brown MS, Goldstein JL (1989) Different combinations of cysteine-rich repeats mediate binding of low density lipoprotein receptor to two different proteins. J Biol Chem 264:21682–21688

    PubMed  CAS  Google Scholar 

  • Sanan DA, van der Westhuyzen DR, Gevers W, Coetzee GA (1987) The surface distribution of low density lipoprotein receptors on cultured fibroblasts and endothelial cells: ultrastructural evidence for dispersed receptors. Histochem 86:517–523

    CAS  Google Scholar 

  • Seguchi T, Merkle RK, Ono M, Kuwano M, Cummings RD (1991) The dysfunctional LDL receptor in a monensin-resistant mutant of Chinese hamster ovary cells lacks selected 0-linked oligosaccharides. Arch Biochem Biophys 284:245–256

    PubMed  CAS  Google Scholar 

  • Sherrill BC, Innerarity TL, Mahley RW (1980) Rapid hepatic clearance of the canine lipoproteins containing only the E apoprotein by a high affinity receptor: identity with the chylomicron remnant transport process. J Biol Chem 255: 1804–1807

    PubMed  CAS  Google Scholar 

  • Simons LA, Reichl D, Myant NB, Mancini M (1975) The metabolism of the apoprotein of plasma low density lipoprotein in familial hyperbetalipoproteinemia in the homozygous form. Atherosclerosis 21:283

    PubMed  CAS  Google Scholar 

  • Slotte JP, Oram JF, Bierman EL (1987) Binding of high density lipoproteins to cell receptors promotes translocation of cholesterol from intracellular membranes to the cell surface. J Biol Chem 262:12904–12907

    PubMed  CAS  Google Scholar 

  • Smith JR, Osborne TF, Brown MS, Goldstein JL, Gil G (1988) Multiple sterol regulatory elements in promoter for hamster 3-hydroxy-3-methylglutaryl-coenzyme A synthase. J Biol Chem 263:18480–18487

    PubMed  CAS  Google Scholar 

  • Smith JR, Osborne TF, Goldstein JL, Brown MS (1990) Identification of nucleotides responsible for enhancer activity of sterol regulatory element in low density lipoprotein receptor gene. J Biol Chem 265:2306–2310

    PubMed  CAS  Google Scholar 

  • Soutar AK, Knight BL (1990) Structure and regulation of the LDL-receptor and its gene. Br Med Bull 46:891–916

    PubMed  CAS  Google Scholar 

  • Spady SK, Turley SD, Dietschy JM (1985) Rate of low density lipoprotein uptake and cholesterol synthesis are regulated independently in the liver. J Lipid Res 26:465–472

    PubMed  CAS  Google Scholar 

  • Sparrow CP, Parthasarathy S, Steinberg D (1989) A macrophage receptor that recognizes oxidized low-density lipoprotein but not acetylated low-density lipoprotein. J Biol Chem 264:2599–2604

    PubMed  CAS  Google Scholar 

  • St Clair RW, Leight MA (1983) Cholesterol efflux from cells enriched with cholesteryl esters by incubation with hypercholesterolemic monkey low density lipoprotein. J Lipid Res 24:183–191

    Google Scholar 

  • Stein O, Stein Y (1980) Bovine aortic endothelial cells display macrophage-like properties towards acetylated 125I-labelled low density lipoprotein. Biochim Biophys Acta 620:631–635

    PubMed  CAS  Google Scholar 

  • Steinberg D (1978) The rediscovery of high density lipoprotein; a negative risk factor in atherosclerosis. Eur J Clin Invest 8:107–109

    PubMed  CAS  Google Scholar 

  • Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL (1989) Beyond cholesterol: modifications of low-density lipoprotein that increases its atherogenicity. N Engl J Med 320:915–924

    PubMed  CAS  Google Scholar 

  • Stifani S, Barber DL, Aebersold R, Steyrer E, Shen X, Nimpf J, Schneider WJ (1991) The laying hen expresses two different low density lipoprotein receptor-related proteins. J Biol Chem 266:19079–19087

    PubMed  CAS  Google Scholar 

  • Strickland DK, Ashcom JD, Williams S, Burgess WH, Migliorini M, Argraves WS (1990) Sequence identity between the a2-macroglobulin receptor and low density lipoprotein receptor-related protein suggests that this molecule is a multifunctional receptor. J Biol Chem 265:17401–17404

    PubMed  CAS  Google Scholar 

  • Südhof TC, Goldstein JL, Brown MS, Russell DW (1985a) The LDL receptor gene: a mosaic of exons shared with different proteins. Science 228:815–822

    Google Scholar 

  • Südhof TC, Russell DW, Goldstein JL, Brown MS, Sanchez-Pescador R, Bell GI (1985b) Cassette of eight exons shared by genes for LDL receptor and EGF precursor. Science 228:893–895

    Google Scholar 

  • Südhof TC, van der Westhuyzen DR, Goldstein JL, Brown MS, Russell DW (1987) Three direct repeats and a TATA-like sequence are required for regulated expression of the human low density lipoprotein receptor gene. J Biol Chem 262:10773–10779

    PubMed  Google Scholar 

  • Tanner FC, Noll G, Boulanger CM, Löscher TF (1991) Oxidized low density lipoproteins inhibit relaxations of porcine coronary arteries: role of scavenger receptor and endothelium-derived nitric oxide. Circulation 83:2012–2020

    PubMed  CAS  Google Scholar 

  • Taylor RF, Saucier SE, Shown EP, Parish EJ, Kandutsch AA (1984) Correlation between oxysterol binding to a cytosolic binding protein and potency in the repression of hydroxymethylglutaryl coenzyme A reductase. J Biol Chem 259:10773–10779

    Google Scholar 

  • Utermann G, Hoppichler F, Dieplinger H, Seed M, Thompson G, Boerwinkle E (1989) Defects in the low density lipoprotein receptor gene affect lipoprotein (a) levels: multiplicative interaction of two gene loci associated with premature atherosclerosis. Proc Natl Acad Sci USA 86:4171–4174

    PubMed  CAS  Google Scholar 

  • Van Berkel TJC, De Rijke YB, Kruijt JK (1991) Different fate in vivo of oxidatively modified low density lipoprotein and acetylated low density lipoprotein in rats: recognition by various scavenger receptors on Kupffer and endothelial liver cells. J Biol Chem 266:2282–2289

    PubMed  Google Scholar 

  • Van Driel IR, Goldstein JL, Südhof TC, Brown MS (1987a) First cysteine-rich repeat in ligand-binding domain of low density lipoprotein receptor binds Cat+ and monoclonal antibodies, but not lipoproteins. J Biol Chem 262:17443–17449

    Google Scholar 

  • Van Driel IR, Davis CG, Goldstein JL, Brown MS (1987b) Self-association of the low density lipoprotein receptor mediated by the cytoplasmic domain. J Biol Chem 262:16127–16134

    Google Scholar 

  • Via DP, Dresel HA, Cheng SL, Gotto AM Jr (1985) Murine macrophage tumors are a source of a 260,000-Dalton acetyl-low density lipoprotein receptor. J Biol Chem 260:7379–7386

    PubMed  CAS  Google Scholar 

  • Wade DP, Knight BL, Soutar AK (1989) Regulation of low-density-lipoproteinreceptor mRNA by insulin in human hepatoma Hep G2 cells. Eur J Biochem 181:727–731

    PubMed  CAS  Google Scholar 

  • Watanabe Y (1980) Serial inbreeding of rabbits with hereditary hyperlipidemia (WHHL-rabbit). Incidence and development of atherosclerosis and xanthoma. Atherosclerosis 36:261–268

    PubMed  CAS  Google Scholar 

  • Weisgraber KH, Mahley RW, Kowal RC, Herz J, Goldstein JL, Brown MS (1990) Apolipoprotein C-I modulates the interaction of apolipoprotein E with ß-migrating very low density lipoproteins (ß-VLDL) and inhibits binding of 13VLDL to low density lipoprotein receptor-related protein. J Biol Chem 265: 22453–22459

    PubMed  CAS  Google Scholar 

  • Wilson JM, Chowdhury JR (1990) Prospects for gene therapy of familial hypercholesterolemia. Mol Biol Med 7:223–232

    PubMed  CAS  Google Scholar 

  • Wilson JM, Chowdhury NR, Grossman M, Wajsman R, Epstein A, Mulligan RC, Chowdhury JR (1990) Temporary amelioration of hyperlipidemia in low density lipoprotein receptor-deficient rabbits transplanted with genetically midified hepatocytes. Proc Natl Acad Sci USA 87:8437–8441

    PubMed  CAS  Google Scholar 

  • Wilson C, Wardell MR, Weisgraber KH, Mahley RW, Agard DA (1991) Three-dimensional structure of the LDL receptor-binding domain of human apolipoprotein E. Science 252:1817–1822

    CAS  Google Scholar 

  • Windier E, Chao Y-S, Havel RJ (1980) Determinants of hepatic uptake of triglyceride-rich lipoproteins and their remnants in the rat. J Biol Chem 255: 5475–5480

    Google Scholar 

  • Yamamoto T, Davis CG, Brown MS, Schneider WJ, Casey ML, Goldstein JL, Russell DW (1984) The human LDL receptor: a cysteine-rich protein with multiple Alu sequences in its mRNA. Cell 39:27–38

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Bishop RW, Brown MS, Goldstein JL, Russell DW (1986) Deletion in cysteine-rich region of LDL receptor impedes transport to cell surface in WHHL rabbit. Science 232:1230–1237

    PubMed  CAS  Google Scholar 

  • Ylä-Herttuala S, Palinski W, Rosenfeld ME, Parthasarathy S, Carew TE, Butler S, Witztum JL, Steinberg D (1989) Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. J Clin Invest 84:1086–1095

    PubMed  Google Scholar 

  • Ylä-Herttuala S, Rosenfeld ME, Parthasarathy S, Sigal E, Sarkioja T, Witztum JL, Steinberg D (1991) Gene expression in macrophage-rich human atherosclerotic lesions: 15-lipoxygenase and acetyl low density lipoprotein receptor messenger RNA colocalize with oxidation specific lipid—protein adducts. J Clin Invest 87:1146–1152

    PubMed  Google Scholar 

  • Yokode M, Kita T, Arai H, Kawai C, Narumiya S, Fujiwara M (1988) Cholesteryl ester accumulation in macrophages incubated with low density lipoprotein pretreated with cigarette smoke extract. Proc Natl Acad Sci USA 85:2344–2348

    PubMed  CAS  Google Scholar 

  • Yokode M, Hammer RE, Ishibashi S, Brown MS, Goldstein JL (1990) Diet-induced hypercholesterolemia in mice: prevention by overexpression of LDL receptors. Science 250:1273–1275

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Villiers, W.J.S., Coetzee, G.A., van der Westhuyzen, D.R. (1994). Lipoprotein Receptors. In: Schettler, G., Habenicht, A.J.R. (eds) Principles and Treatment of Lipoprotein Disorders. Handbook of Experimental Pharmacology, vol 109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78426-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78426-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78428-6

  • Online ISBN: 978-3-642-78426-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics