Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 109))

Abstract

A large number of drugs influence lipid or lipoprotein metabolism. The drugs which are most commonly used for lipid lowering are discussed in other sections of this volume. Several agents are used for specific therapeutic purposes other than lipid lowering. Their effects on lipid metabolism are useful or — more often — unwanted side effects. This chapter will focus on the drugs that have been used or may be useful to treat hyper- or dyslipoproteinemia, which have not been covered in other parts of this volume. It would be beyond the scope of this chapter to discuss all the drugs (e.g., β-blockers, diuretics, phenytoin, and others) with side effects on lipoprotein metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albers JJ, Taggart HM, Applebaum-Bowden D, Haffner S, Chestnut C III, Hazzard WR (1984) Reduction of lecithin-cholesterol acyltransferase, apolipoprotein D and the Lp(a) lipoprotein with the anabolic steroid stanozolol. Biochim Biophys Acta 795: 293–301

    PubMed  CAS  Google Scholar 

  • Armstrong MJ, Carey MC (1987) Thermodynamic and molecular determinants of sterol solubilities in bile salt micelles. J Lipid Res 28: 1144–1155

    PubMed  CAS  Google Scholar 

  • Audier M, Pastor J, Pauli AM, Poggi L (1962) Essai de traitement de l’athérosclérose par le beta-sitosterol. Rev Med Fr 43: 7–12

    Google Scholar 

  • Bechtol LD, Warner WL (1969) Dextrothyroxine for lowering’ serum cholesterol. Angiology 20: 565–579

    PubMed  CAS  Google Scholar 

  • Becker M, Staab D, von Bergmann K (1992) Long-term treatment of severe familial hypercholesterolemia in children: effect of sitosterol and bezafibrate. Pediatrics 89: 138–142

    PubMed  CAS  Google Scholar 

  • Begemann F, Bandomer G, Herget HJ (1978) The influence of ß-sitosterol on biliary cholesterol saturation and bile acid kinetics in man. Scand J Gastroenterol 13: 57–63

    PubMed  CAS  Google Scholar 

  • Berge KG, Achor RWP, Barker NW, Power H (1959) Comparison of the treatment of hypercholesterolemia with nicotinic acid, sitosterol, and safflower oil. Am Heart J 58: 849–853

    PubMed  CAS  Google Scholar 

  • Best MM, Duncan CH, van Loon EJ, Wathen JD (1954) Lowering of serum chole-sterol by the administration of a plant sterol. Circulation 10: 201–206

    PubMed  CAS  Google Scholar 

  • Best MM, Duncan CH, van Loon EJ, Wathen JD (1955) The effects of sitosterol on serum lipids. Am J Med 19: 61–70

    PubMed  CAS  Google Scholar 

  • Bhattacharyya AK, Connor WE (1974) ß-Sitosterolemia and xanthomatosis: a newly described lipid storage disease in two sisters. J Clin Invest 53: 1033–1043

    PubMed  CAS  Google Scholar 

  • Billheimer JT, Gillies PJ (1990) Intracellular cholesterol esterification. In: Esfahani M, Swaney JB (eds) Advances in cholesterol research. Telford, Caldwell, pp 7–46

    Google Scholar 

  • Boberg KM, Skrede B, Skrede S (1986) Metabolism of 24-ethyl-4-cholesten-3-one and 24-ethyl-5-cholesten-3 ß-ol (sitosterol) after intraperitoneal injection in the rat. Scand J Clin Lab Invest Suppl 184: 47–54

    PubMed  CAS  Google Scholar 

  • Boberg KM, Akerlund JE, Bjorkhem I (1989) Effect of sitosterol on the rate limiting enzymes in cholesterol synthesis and degradation. Lipids 24: 9–12

    PubMed  CAS  Google Scholar 

  • Boberg KM, Einarsson K, Bjorkhem I (1990) Apparent lack of conversion of sitosterol into C24-bile acids in humans. J Lipid Res 31: 1083–1088

    PubMed  CAS  Google Scholar 

  • Boberg KM, Pettersen KS, Prydz H (1991) Toxicity of sitosterol to human umbilical vein endothelial cells in vitro. Scand J Clin Lab Invest 51: 509–516

    PubMed  CAS  Google Scholar 

  • Breen KJ, Bryant RE, Levinson JD, Shenker S (1972) Neomycin absorption in man Ann Intern Med 76: 211–218

    CAS  Google Scholar 

  • Britton H, Shebab Z, Lightner E, New M, Chow D (1988) Adrenal response in children receiving high doses of ketoconazole for systemic coccidiomycosis. J Pediatr 112: 488–492

    PubMed  CAS  Google Scholar 

  • Brown MS, Goldstein JL (1974) Suppression of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase activity and inhibition of growth of human fibroblasts by 7-ketocholesterol. J Biol Chem 249: 7306–7314

    PubMed  CAS  Google Scholar 

  • Canner PL, Berg KG, Wenger NK, Stamler J, Friedman L, Prineas RJ, Friedewald W (1986) Fifteen year mortality in coronary drug project patients: long term benefit with niacin. J Am Coll Cardiol 8: 1245–1255

    PubMed  CAS  Google Scholar 

  • Cayen MN (1970) Agents affecting lipid metabolism. 38. Effect of neomycin on cholesterol biosynthesis and bile acid precipitation. Am J Clin Nutr 23: 1234–1240

    PubMed  CAS  Google Scholar 

  • Chijiiwa K (1987) Distribution and partitioning of cholesterol and beta-sitosterol in micellar bile salt solutions. Am J Physiol 253: G268 - G273

    PubMed  CAS  Google Scholar 

  • Child P, Kuksis A (1986) Investigation of the role of micellar phospholipid in the preferential uptake of cholesterol over sitosterol by dispersed rat jejunal villus cells. Biochem Cell Biol 64: 847–853

    PubMed  CAS  Google Scholar 

  • Coronary Drug Project Research Group (1970) The Coronary Drug Project: initial findings leading to modifications of its research protocol. JAMA 214: 1303–1313

    Google Scholar 

  • Coronary Drug Project Research Group (1972) The Coronary Drug Project: initial findings leading to further modifications of its protocol with respect to dextrothyroxine. JAMA 220: 996–1008

    Google Scholar 

  • Coronary Drug Project Research Group (1975) Clofibrate and niacin in coronary heart disease. JAMA 231: 360–381

    Google Scholar 

  • Craven PC, Graybill JR, Jorgensen JH, Dismukes WE, Levine BE (1983) High-dose kotoconazole for treatment of fungal infections of the central nervous system. Ann Intern Med 98: 160–167

    PubMed  CAS  Google Scholar 

  • Daneshmend TK, Warnock DW (1988) Clinical pharmacokinetics of ketoconazole. Clin Pharmacokinet 14: 13–34

    PubMed  CAS  Google Scholar 

  • DeFelice R, Johnson DG, Galgiani JN (1981) Gynecomastia with ketoconazole. Antimicrob Agents Chemother 19: 1073–1074

    PubMed  CAS  Google Scholar 

  • DeSomer P, Vanderhaeghe H, Eyssen H (1964) Influence of basic antibiotics on serum-and liver-cholesterol concentrations in chicks. Nature 204: 1306

    PubMed  CAS  Google Scholar 

  • Drexel H, Breier C, Lisch HJ, Sailer S (1981) Lowering plasma cholesterol with)3-sitosterol and diet. Lancet 1: 1157–1158

    PubMed  CAS  Google Scholar 

  • Eyssen H, Evrard E, Vanderhaeghe H (1966) Cholesterol-lowering effects of N-methylated neomycin and basic antibiotics. J Lab Clin Med 68: 753–768

    PubMed  CAS  Google Scholar 

  • Farquhar JW, Sokolow M (1958) Response of serum lipids and lipoproteins of man to beta-sitosterol and safflower oil. A long term study. Circulation 17: 890–899

    PubMed  CAS  Google Scholar 

  • Field FJ, Mathur SN (1983) ß-sitosterol: esterification by intestinal acylcoenzyme A: cholesterol acyltransferase ( ACAT) and its effect on cholesterol esterification. J Lipid Res 24: 409–417

    PubMed  CAS  Google Scholar 

  • Glueck CJ, Speirs J, Tracy T, Streicher P, Iµig E, Vandegrift J (1991) Relationships of serum plant sterols (phytosterols) and cholesterol in 595 hypercholesterolemic subjects, and familial aggregation of phytosterols, cholesterol, and premature coronary heart disease in hyperphytosterolemic probands and their first-degree relatives. Metabolism 40: 842–848

    PubMed  CAS  Google Scholar 

  • Gregg RE, Connor WE, Lin DS, Brewer HB Jr (1986) Abnormal metabolism of shellfish sterols in a patient with sitosterolemia and xanthomatosis. J Clin Invest 77: 1864–1872

    PubMed  CAS  Google Scholar 

  • Grundy SM, Mok HYI (1977) Determination of cholesterol absorption in man by intestinal perfusion. J Lipid Res 18: 263–271

    PubMed  CAS  Google Scholar 

  • Gurakar A, Hoeg JM, Kostner G, Papadopoulos NM, Brewer HB Jr (1985) Levels of lipoprotein Lp(a) decline with neomycin and niacin treatment. Atherosclerosis 57: 293–301

    PubMed  CAS  Google Scholar 

  • Gylling H, Vanhanen H, Miettinen TA (1991) Hypolipidemic effect and mechanism of ketoconazole without and with cholestyramine in familial hypercholesterolemia. Metabolism 40: 35–41

    PubMed  CAS  Google Scholar 

  • Hasibeder H, Staab HJ, Seibel K, Heibel B, Schmidle G, März W (1991) Clinical pharmacology of the hypocholesterolemic agent K 12.148 (lifibrol) in healthy volunteers. Eur J Clin Pharmacol 40 Suppl 1: S91 — S94

    Google Scholar 

  • Hassan AS, Rampone AJ (1979) Intestinal absorption and lymphatic transport of cholesterol and beta-sitosterol in the rat. J Lipid Res 20: 646–653

    PubMed  CAS  Google Scholar 

  • Heinemann T, Leiss O, von Bergmann K (1986) Effect of low-dose sitostanol on serum cholesterol in patients with hypercholesterolemia. Atherosclerosis 61: 219–223

    PubMed  CAS  Google Scholar 

  • Heinemann T, Kullak-Ublick GA, Pietruck B, von Bergmann K (1991) Mechanisms of action of plant sterols on inhibition of cholesterol absorption. Comparison of sitosterol and sitostanol. Eur J Clin Pharmacol 40 Suppl 1: S59 - S63

    PubMed  CAS  Google Scholar 

  • Hoeg JM, Maher MB, Bou E, Zech LA, Bailey KR, Gregg RE, Sprecher DL, Susser JK, Pikus AM, Brewer HB Jr (1984) Normalization of plasma lipoprotein concentrations in patients with type II hyperlipoproteinemia by combined use of neomycin and niacin. Circulation 70: 1004–1011

    PubMed  CAS  Google Scholar 

  • Hoeg JM, Maher MB, Bailey KR, Zech LA, Gregg RE, Sprecher DL, Brewer HB Jr (1985) Effects of combination cholestyramine—neomycin treatment on plasma lipoprotein concentrations. Am J Cardiol 55: 1282–1286

    PubMed  CAS  Google Scholar 

  • Hoeg JM, Maher MB, Bailey KR, Brewer HB Jr (1986) The effects of mevinolin and neomycin alone and in combination on plasma lipid and lipoprotein concentrations in type II hyperlipoproteinemia. Atherosclerosis 60: 209–214

    PubMed  CAS  Google Scholar 

  • Hubmann R (1965) Irreversible Ertaubung nach Neomyzinbehandlung bei normaler Nierenfunktion. Urologe 4: 27–28

    Google Scholar 

  • Ikeda I, Tanaka K, Sugano M, Vahouny GV, Gallo LL (1988a) Inhibition of cholesterol absorption in rats by plant sterols. J Lipid Res 29: 1573–1582

    PubMed  CAS  Google Scholar 

  • Ikeda I, Tanaka K, Sugano M, Vahouny GV, Gallo LL (1988b) Discrimination between cholesterol and sitosterol for absorption in rats. J Lipid Res 29: 1583–1591

    PubMed  CAS  Google Scholar 

  • Ikeda I, Tanabe Y, Sugano M (1989) Effects of sitosterol and sitostanol on micellar solubility of cholesterol. J Nutr Sci Vitaminol 35: 361–369

    PubMed  CAS  Google Scholar 

  • Jacobson ED, Prior JT, Faloon WW (1960a) Malabsorptive syndrome induced by neomycin: morphologic alterations in the jejunal mucosa. J Lab Clin Med 56: 245–250

    PubMed  CAS  Google Scholar 

  • Jacobson ED, Chodos RB, Faloon WW (1960b) An experimental malabsorption syndrome induced by neomycin. Am J Med 28: 524–533

    PubMed  CAS  Google Scholar 

  • Jawetz E (1956) Polymyxin, neomycin, bacitracin. Medical Encyclopedia, New York (Antibiotics monograph, no 5 )

    Google Scholar 

  • Kaffarnik H, Mühlfellner G, Mühlfellner O, Schneider J, Hausmann L, Zöfel P, Schubotz R, Fuchs F (1977) Beta-Sitosterin in der Behandlung essentieller Hyperlipoproteinämien vom Typ II. Fortschr Med 95; 2785–2787

    PubMed  CAS  Google Scholar 

  • Kesäniemi YA, Grundy SM (1984) Turnover of low density lipoproteins during inhibition of cholesterol absorption by neomycin. Arteriosclerosis 4: 41–48

    PubMed  Google Scholar 

  • Kesäniemi YA, Miettinen TA (1991) Inhibition of cholesterol absorption by neomycin, nenzodiazepine derivatives and ketoconazole. Eur J Clin Pharmacol 40 Suppl 1: 65–67

    Google Scholar 

  • Kraemer FB, Pont A (1986) Inhibition of cholesterol synthesis by ketoconazole. Am J Med 80: 616–622

    PubMed  CAS  Google Scholar 

  • Kunin CM (1960) Absorption of orally administered neomycin. N Engl J Med 262: 380–385

    PubMed  CAS  Google Scholar 

  • Lake-Bakaar G, Scheuer PJ, Sherlock S (1987) Hepatic reactions associated with ketoconazole in the United Kingdom. Br Med J 294: 419–422

    CAS  Google Scholar 

  • Lederle RM (1983) Langzeitbehandlung der Hypercholesterinämie bei terminaler Niereninsuffizienz. Med Klin 78: 136–137

    Google Scholar 

  • Lees AM, Mok HYI, Lees RS, McCluskey A, Grundy SM (1977) Plant sterols as cholesterol-lowering agents. Clinical trials in patients with hypercholesterolemia and studies on sterol balance. Atherosclerosis 28: 325–338

    PubMed  CAS  Google Scholar 

  • Lehmann JH, Bennett BM (1958) Effect of sitosterol on survival and recurrence rates in myocardial infarction. Circulation 18: 747–748

    Google Scholar 

  • Loose DS, Kan PB, Hirst MA, Marcus RA, Feldman D (1983) Ketoconazole blocks adrenal P450-dependent enzymes. J Clin Invest 71: 1495–1499

    PubMed  CAS  Google Scholar 

  • März W, Scharnagl H, Biemer G, Schliack M, Siekmeier R, Löser R, Seibel K, Gross W (1992) The mechanism of action of lifibrol (K12.148). 4th International Symposium on treatment of severe dyslipoproteinemia in the prevention of coronary heart disease, Munich

    Google Scholar 

  • Mayer RJ, Adams JL, Bossard MJ, Berkhout TA (1991) Effects of a novel lanosterol 14a-demethylase inhibitor on the regulation of 3-hydroxy-3-methylglutarylcoenzyme A reductase in Hep G2 cells. J Biol Chem 266: 20070–20078

    PubMed  CAS  Google Scholar 

  • McNamara DJ, Kolb R, Parker TS, Batvin H, Samuel P, Brown CD, Ahrens EH Jr (1987) Heterogeneity of cholesterol homeostasis in man. J Clin Invest 79: 729–739

    Google Scholar 

  • Miettinen TA (1979) Effects of neomycin alone and in combination with cholestyramine on serum cholesterol and fecal steroids in hypercholesterolemic subjects. J Clin Invest 64: 1485–1493

    PubMed  CAS  Google Scholar 

  • Miettinen TA (1988) Cholesterol metabolism during ketoconazole treatment in man. J Lipid Res 29: 43–51

    PubMed  CAS  Google Scholar 

  • Miettinen TA, Valtonen VV (1984) Ketoconazole and cholesterol synthesis. Lancet 2: 1271

    PubMed  CAS  Google Scholar 

  • Oster P, Schlierf G, Heuck CC, Greten H, Gundert-Remy U, Haase W, Klose G, Nothelfer A, Raetzer H, Schellenberg B, Schmidt-Gayk H (1976) Sitosterin bei familiärer Hyperlipoproteinämie Typ II. Eine randomisierte, gekreurte Doppelblindstudie. Dtsch Med Wochenschr 101: 1308–1311

    PubMed  CAS  Google Scholar 

  • Peterson DW (1951) Effect of soybean sterols in the diet on plasma and liver cholesterol in chicks. Proc Soc Exp Biol Med 78: 143–145

    PubMed  CAS  Google Scholar 

  • Pollak OJ (1953a) Successful prevention of experimental hypercholesterolemia and cholesterol atherosclerosis in the rabbit. Circulation 7: 696–701

    PubMed  CAS  Google Scholar 

  • Pollak OJ (1953b) Reduction of blood cholesterol in man. Circulation 7:702–706

    Google Scholar 

  • Pont A, Williams PL, Azhar S, Reitz RE, Bochra C, Smith ER, Stevens DA (1982a)Ketoconazole blocks testosterone synthesis. Arch Intern Med 142:2137–2140

    PubMed  CAS  Google Scholar 

  • Pont A, Williams PL, Loose DS, Feldman D, Reitz RE, Bochra C, Stevens DA (1982b) Ketoconazole blocks adrenal steroid synthesis. Ann Intern Med 97: 370–372

    PubMed  CAS  Google Scholar 

  • Salen G, Ahrens EH Jr, Grundy SM (1970) Metabolism of ß-sitosterol in man. J Clin Invest 49: 952–967

    PubMed  CAS  Google Scholar 

  • Salen G, Tint GS, Shefer S, Shore V, Nguyen L (1992) Increased sitosterol absorption is offset by rapid elimination to prevent accumulation in heterozygotes with sitosterolemia. Arterioscler Thromb 12: 563–568

    PubMed  CAS  Google Scholar 

  • Samuel P (1979) Treatment of hypercholesterolemia with neomycin. A time for reappraisal. N Engl J Med 301: 595–597

    PubMed  CAS  Google Scholar 

  • Samuel P, Steiner A (1959) Effect of neomycin on serum cholesterol level of man. Proc Soc Exp Biol Med 100: 193–195

    PubMed  CAS  Google Scholar 

  • Samuel P, Waithe WI (1961) Reduction of serum cholesterol concentrations by neomycin, para-aminosalicylic acid, and other antibacterial drugs in man. Circulation 24: 578–591

    PubMed  CAS  Google Scholar 

  • Samuel P, Holtzman CM, Meilman E, Perl W (1968) Effect of neomycin on exchangeable pools of cholesterol in the steady state. J Clin Invest 47: 1806–1818

    PubMed  CAS  Google Scholar 

  • Samuel P, Holtzman CM, Meilman E, Sekowski I (1970) Reduction of serum cholesterol and triglyceride levels by the combined administration of neomycin and clofibrate. Circulation 41: 109–114

    PubMed  CAS  Google Scholar 

  • Samuel P, Holtzman CM, Meilman E, Sekowski I (1973) Effect of neomycin and other antibiotics on serum cholesterol levels and 7-alpha-dehydroxylation of bile acids by the fecal bacterial flora in man. Circ Res 33: 393–402

    PubMed  CAS  Google Scholar 

  • Samuel P, McNamara DJ, Ahrens EH, Crouse JR, Parker T (1982) Further validation of the plasma isotope ratio method for measurement of cholesterol absorption. J Lipid Res 23: 480–489

    PubMed  CAS  Google Scholar 

  • Schliack M, Löser R, Seibel K (1989) Hypolipidemic activity of K 12.148 in rats, marmosets and pigs. Artery 16: 90–104

    PubMed  CAS  Google Scholar 

  • Schwartzkopff W, Jantke H-J (1978) Dosiswirksamkeit von ß-Sitosterin bei Hypercholesterinämien der Typen IIa and IIb. MMW 120: 1575–1578

    CAS  Google Scholar 

  • Schwartzkopff W, Jantke H-J (1980) Verhalten der ß-Acetyldigoxinresorption nach Gabe von ß-Sitosterin oder Cholestyramin. Med Welt 33: 1183–1188

    Google Scholar 

  • Sedaghat A, Samuel P, Crouse JR, Ahrens EH Jr (1975) Effects of neomycin on absorption, synthesis, and/or flux of cholesterol in man. J Clin Invest 55: 1221

    Google Scholar 

  • Sliskovic DR, White AD (1991) Therapeutic potential of ACAT inhibitors as lipid lowering and anti-atherosclerotic drugs. Trends Pharmacol Sci 12: 194–199

    PubMed  CAS  Google Scholar 

  • Sugar AM, Alsip S, Galgiani JN, Graybill JR, Dismukes WE, Cloud GA, Craven PC, Stevens DA (1987) Pharmacology and toxicity of high dose ketoconazole. Antimicrob Agents Chemother 31: 1874–1878

    PubMed  CAS  Google Scholar 

  • Thienpont D, van Cutsen J, van Gerven F, Heeres J, Janssen PAJ (1979) Ketoconazole: a new broad spectrum orally active antimycotic. Experientia 35: 606–607

    PubMed  CAS  Google Scholar 

  • Thompson GR (1989) Lipid related consequences of intestinal malabsorption. Gut 30: 29–34 (Festschrift)

    Google Scholar 

  • Thompson GR, MacMahon M, Claes PJ (1970) Precipitation by neomycin compounds of fatty acid and cholesterol from mixed micellar solutions. Eur J Clin Invest 1: 40–47

    PubMed  CAS  Google Scholar 

  • Thompson GR, Barrowman J, Gutierrez L, Dowling RH (1971) Action of neomycin on the intraluminal phase of lipid absorption. J Clin Invest 50: 319–323

    PubMed  CAS  Google Scholar 

  • Thompson GR, Henry K, Edington N, Trexler PC (1972) Effect of neomycin on cholesterol metabolism in the germ-free pig. Eur J Clin Invest 2: 365–371

    PubMed  CAS  Google Scholar 

  • Trachtenberg J, Pont A (1984) Ketoconazole therapy for advanced prostate cancer. Lancet 2: 433–435

    PubMed  CAS  Google Scholar 

  • Underwood AH, Emmett JC, Ellis D, Flynn SB, Leeson PD, Benson GM, Novelli R, Pearce NJ, Shah VP (1986) A thyromimetic that decreases plasma cholesterol levels without increasing cardiac activity. Nature 324: 425–429

    PubMed  CAS  Google Scholar 

  • Van Cutsem J (1983) The antifungal activity of ketoconazole. Am J Med 74 Suppl 1B: 9–15

    Google Scholar 

  • Van den Bosch JF, Claes P (1967) Correlations between bile salt precipitating capacity of derivatives of basic antibiotics and their plasma cholesterol lowering effect in vivo. Prog Biochem Pharmacol 2: 97–104

    Google Scholar 

  • Van den Bossche H, Willemsen G, Cools W, Cornelissen F, Lauwers WF, van Cutsem JM (1980) In vitro and in vivo effects of the antimycotic drug ketoconazole on sterol synthesis. Antimicrob Agents Chemother 17: 922–928

    PubMed  Google Scholar 

  • Waisbren BA, Spink WW (1950) Clinical appraisal of neomycin. Ann Intern Med 33: 1099–1119

    PubMed  CAS  Google Scholar 

  • Waksman SA, Lechevalier HA (1949) Neomycin as new antibiotic active against streptomycin resistant bacteria. Science 109: 305–307

    PubMed  CAS  Google Scholar 

  • Weisweiler P, Heinemann V, Schwandt P (1984) Serum lipoproteins and lecithin: cholesterol acyltranferase ( LCAT) activity in hypercholesterolemic subjects given ß-sitosterol. Int J Clin Pharmacal Ther Toxicol 22: 224–226

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lackner, K.J., von Hodenberg, E. (1994). Miscellaneous Lipid-Lowering Drugs. In: Schettler, G., Habenicht, A.J.R. (eds) Principles and Treatment of Lipoprotein Disorders. Handbook of Experimental Pharmacology, vol 109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78426-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78426-2_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78428-6

  • Online ISBN: 978-3-642-78426-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics