Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 109))

  • 265 Accesses

Abstract

The bile acid-binding resins cholestyramine (CH) and colestipol (CO) are effective drugs for the treatment of patients with elevated low-density lipoprotein (LDL) cholesterol plasma concentrations without concurrent hypertriglyceridemia. Since the bile acid sequestrants are not absorbed in the gastrointestinal tract, they cannot cause direct systemic side effects. They activate the natural pathway for LDL elimination from the circulation by stimulating the expression of LDL receptors. Thus, the sequestrants are ideal drugs for treatment of LDL hypercholesterolemia from the pharmacologist’s point of view. However, their mode of administration as a bulky powder and the gastrointestinal side effects may cause practical problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Shareef AH, Buss DC, Routledge PA (1990) Drug adsorption to charcoals and anionic binding resins. Hum Exp Toxicol 9: 95–97

    PubMed  CAS  Google Scholar 

  • Angelin B, Bjorkhem I, Einarsson K (1981) Influence of bile acids on the soluble phosphatidic acid phosphatase in rat liver. Biochem Biophys Res Commun 100: 606–612

    PubMed  CAS  Google Scholar 

  • Angelin B, Eriksson M, Eriksson K (1986) Combined treatment with cholestyramine and nicotinic acid in heterozygous familial hypercholesterolaemia: effects on biliary lipid composition. Eur J Clin Invest 16: 391–396

    PubMed  CAS  Google Scholar 

  • Angelin B, Leijd B, Hultcrantz R, Einarsson K (1990) Increased turnover of very low density lipoprotein triglyceride during treatment with cholestyramine in familial hypercholesterolaemia. J Intern Med 227: 201–206

    PubMed  CAS  Google Scholar 

  • Ariano RE, Zhanel GG, Harding GKM (1990) The role of anion-exchange resins in the treatment of antibiotic-associated pseudomembranous colitis. Can Med Assoc J 142: 1049–1051

    CAS  Google Scholar 

  • Arts CJ, Govers CA, van den Berg H, Wolters MG, van Leeuwen P, Thijssen J (1991) In vitro binding of estrogens by dietary fibre and the in vivo apparent digestibility tested in pigs. J Steroid Biochem Mol Biol 38: 621–628

    PubMed  CAS  Google Scholar 

  • Ast M, Frishman WH (1990) Bile acid sequestrants. J Clin Pharmacol 30: 99–106

    PubMed  CAS  Google Scholar 

  • Bard JM, Pârra HJ, Douste-Blazy P, Fruchard JC (1990) Effect of pravastatin, an HMG CoA reductase inhibitor, and cholestyramine, a bild acid sequestrant, on lipoprotein particles defined by their apolipoprotein composition. Drugs 39: 917–928

    Google Scholar 

  • Barnard DL, Heaton KW (1973) Bile acids and vitamin A absorption in man. The effects of two bile acid-binding agents cholestyramine and lignin. Gut 14: 316–318

    CAS  Google Scholar 

  • Bartlett JG, Tedesco FJ, Shull S, Lowe B, Chang T (1980) Symptomatic relapse after oral vancomycin therapy of antibiotic-associated pseudomembranous colitis. Gastroenterology 78: 431–434

    PubMed  CAS  Google Scholar 

  • Basu SG (1965) Effect of cholestyramine on absorption of amino acids and vitamin A in man. Master’s thesis, University of Texas, Austin

    Google Scholar 

  • Beil U, Crouse JR, Einarsson K, Grundy SM (1982) Effect of interruption of the enterohepatic circulation of bile acids on the transport of very low density-lipoprotein triglycerides. Metabolism 31: 438–444

    PubMed  CAS  Google Scholar 

  • Belamarich PF, Deckelbaum RJ, Starc TJ, Dobrin BE, Tint S, Salen G (1990) Response to diet and cholestyramine in a patient with sitosterolemia. Pediatrics 86: 977–981

    PubMed  CAS  Google Scholar 

  • Bilicki CV, White JL, Hem SL, Borin MT (1989) Effect of anions on adsorption of bile salts by colestipol hydrochloride. Pharm Res 6: 794–797

    PubMed  CAS  Google Scholar 

  • Blankenhorn DH, Nessim SA, Johnson RL, Sanmarco ME, Azen SP, CashinHemphill L (1987) Beneficial effects of combined colestipol—niacin therapy on coronary atherosclerosis and coronary venous bypass grafts. JAMA 257: 3233–3240

    PubMed  CAS  Google Scholar 

  • Blankenhorn DH, Azen SP, Crawford DW, Nessim SA, Sanmarco ME, Selzer RH, Shircore AM, Wickham EC (1991) Effects of colestipol—niacin therapy on human femoral atherosclerosis. Circulation 83: 438–447

    PubMed  CAS  Google Scholar 

  • Brensike JF, Levy RI, Kelsey SF, Passamani ER, Richardson JM, Loh IK, Stone NJ, Aldrich RF, Battaglini JW, Moriarty DJ, Fisher MR, Friedman L, Friedewald W, Detre KM, Epstein SE (1984) Effects of therapy with cholestyramine on progression of coronary arteriosclerosis: result of the NHLBI Type II Coronary Intervention Study. Circulation 69: 213–324

    Google Scholar 

  • Bressler R, Nowlin J, Bogdonoff MD (1966) The treatment of hypercholesterolemia and hypertriglyceridemia by anion exchange resin. South Med J 59: 1097–1103

    PubMed  CAS  Google Scholar 

  • Briscoe AM, Ragan D (1963) Enhancement of calcium absorption in man by a bile acid sequestrant. Am J Clin Nutr 13: 277–283

    PubMed  CAS  Google Scholar 

  • Brown DD, Juhl RP, Warner SL (1978) Decreased bioavailability of digoxin due to hypocholesterolemic interventions. Circulation 58: 152–172

    Google Scholar 

  • Brown G, Albers JJ, Fisher LD, Schaefer SM, Lin JT, Kaplan CA, Zhao XQ, Bisson BD, Fitzpatrick VF, Dodge HT (1990) Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high level of apolipoprotein B. N Engl J Med 323: 1289–1298

    PubMed  CAS  Google Scholar 

  • Brown MS, Goldstein JL (1986) A receptor-mediated pathway for cholesterol homeostasis. Science 232: 34–47

    PubMed  CAS  Google Scholar 

  • Burbige EJ, Milligan FD (1975) Pseudomembraneous colitis. Association with antibiotics and therapy with cholestyramine. JAMA 231: 1157–1158

    CAS  Google Scholar 

  • Caldwell JH, Bush CA, Greenberger NJ (1971) Interruption of the enterohepatic circulation of digitoxin by cholestyramine. J Clin Invest 50: 2638–2644

    PubMed  CAS  Google Scholar 

  • Callaghan JT, Tsuru M, Holtzmann JL, Hunninghake DB (1983) Effect of cho-lestyramine and colestipol on the absorption of phenytoin. Eur J Clin Pharmacol 24: 675–678

    PubMed  CAS  Google Scholar 

  • Carrella M, Ericsson S, Del Piiano C, Angelin B, Einarsson K (1991) Effect of cholestyramine treatment on biliary lipid secretion rates in normolipidaemic men. J Intern Med 229: 241–246

    PubMed  CAS  Google Scholar 

  • Casdorph HR (1976) Cholestyramine and ion-exchange resins. In: Paoletti R, Glueck CJ (eds) Lipid pharmacology, vol 12, Academic, New York, pp 221–256

    Google Scholar 

  • Cashin-Hemphill L, Spencer CA, Nicoloff JT, Blankenhorn DH, Nessim SA, Chin HP, Lee NA (1987) Alterations in serum thyroid hormonal indices with colestipol—niacin therapy. Ann Intern Med 107: 324–329

    PubMed  CAS  Google Scholar 

  • Cashin-Hemphill L, Mack WJ, Pogoda JW, Pogoda JM, Sanmarco ME, Azen SP, Blankenborn DH (1990) Beneficial effects of colestipol—niacin on coronary atherosclerosis. JAMA 264: 3013–3017

    PubMed  CAS  Google Scholar 

  • Chait A, Lewis B (1972) The hyperlipidemias — a rational approach to classification and management. S Afr Med J 46: 2097–2101

    PubMed  CAS  Google Scholar 

  • Chiang JYL, Miller WF, Lin G-M (1990) Regulation of cholesterol 7alpha-hydroxylase in the liver. J Biol Chem 265: 3889–3897

    PubMed  CAS  Google Scholar 

  • Clas SD (1991) Quaternized colestipol, an improved bile salt adsorbent: in vitro studies. J Pharm Sci 80: 128–131

    PubMed  CAS  Google Scholar 

  • Clifton-Bligh P, Miller NE, Nestel PJ (1974) Increased plasma esterifying activity during colestipol resin therapy in man. Metabolism 23: 437–444

    PubMed  CAS  Google Scholar 

  • Cohen MI, Winslow PR, Boley SJ (1969) Intestinal obstruction associated with cholestyramine therapy. N Engl J Med 280: 1285–1286

    PubMed  CAS  Google Scholar 

  • Coltman D, Mann MD, Bowie MD (1990) Effect of cholestyramine on activity of gentamycin in vitro. Pediatrics 85: 390–391

    PubMed  CAS  Google Scholar 

  • Curtis DM, Driscoll DJ, Goldman DH, Weidman WH (1991) Loss of dental enamel in a patient taking cholestyramine. Mayo Clin Proc 66: 1131

    PubMed  CAS  Google Scholar 

  • Curtis LD, Dickson AC, Ling KLE, Betteridge J (1988) Combination treatment with cholestyramine and bezafibrate for heterozygous familial hypercholesterolaemia. Br Med J 297: 173–175

    CAS  Google Scholar 

  • Danhoff IE (1966) The effect of cholestyramine on fecal excretion of ingested radioiodinated lipids. Am J Clin Nutr 18: 343–349

    Google Scholar 

  • Danielsson H, Sjövall T (1975) Bile acid metabolism. Annu Rev Biochem 44: 233–253

    PubMed  CAS  Google Scholar 

  • Datta DV, Sherlock S (1963) Treatment of pruritus of obstructive jaundice with cholestyramine Br Med J 1: 216–219

    CAS  Google Scholar 

  • Desager JP, Horsmans Y, Harvengt C (1991) Lecithin: cholesterol acyltransferase activity in familial hypercholesterolemia treated with simvastatin and simvastatin plus low-dose colestipol. J Clin Pharmacol 31: 537–542

    PubMed  CAS  Google Scholar 

  • DeSante KA, DiSanto AR, Albert KS, Weber DJ, Welch RD, Vecchio TJ (1979) The effect of colestipol hydrochloride on the bioavailability and pharmacokinetics of clofibrate. J Clin Pharmacol 19: 721–725

    Google Scholar 

  • DeSimone R, Conti F, Lovati MR, Sirtori M, Cocuzza E, Sirtori CR (1978) New microporous cholestyramine analog for the treatment of hypercholesterolemia. J Pharm Sci 67: 1695–1698

    PubMed  Google Scholar 

  • Dordoni B, Willson RA, Thompson RPH, Williams R (1973) Reduction of absorption of paracetamol by activated charcoal and cholestyramine: a possible therapeutic measure. Br Med J 1: 86–87

    Google Scholar 

  • Dorr AE, Gundersen K, Schneider JC, Spencer TW, Martin WB (1978) Colestipol hydrochloride in hypercholesterolemic patients — effect on serum cholesterol and mortality. J Chronic Dis 31: 5–14

    PubMed  CAS  Google Scholar 

  • Dujovne CA, Hurwitz A, Kauffman MD, Azarnoff DL (1974) Colestipol and clofibrate in hypercholesterolemia. Clin Pharmacol Ther 16: 291–296

    PubMed  CAS  Google Scholar 

  • Dujovne CA, Krehbiel P, DeCoursey S, Jackson B, Chernoff SB, Pittermann A, Garty M (1984) Probucol with colestipol in the treatment of hypercholesterolemia. Ann Intern Med 100: 477–482

    PubMed  CAS  Google Scholar 

  • Dujovne CA, Chernoff SB, Krehbiel P, Jackson B, DeCoursey S, Taylor H (1984) Low-dose colestipol plus probucol for hypercholesterolemia. Am J Cardiol 53: 1514–1518

    PubMed  CAS  Google Scholar 

  • East C, Bilheimer DW, Grundy SM (1988) Combination drug therapy for familial combined hyperlipidemia. Ann Intern Med 109: 25–32

    PubMed  CAS  Google Scholar 

  • Einarsson K, Ericsson S, Ewerth S, Reihner E, Rudling M, Stahlberger D, Angelin B (1991) Bile acid sequestrants: mechanisms of action on bile acid and cholesterol metabolism. Eur J Clin Pharmacol 40 Suppl 1: S53 — S58

    Google Scholar 

  • Elmberger PG, Kalen A, Lund E, Reihener E, Eriksson M, Berglund L, Angelin B, Dallner G (1991) Effects of pravastatin and cholestyramine on products of the mevalonate pathway in familial hypercholesterolemia. J Lipid Res 32: 934–940

    Google Scholar 

  • Emmerich J, Aubert I, Bauduceau B, Dachet D, Chanu B, Erlich D, Gautier D, Jacotot B, Rouffy J (1990) Efficacy and safety of simvastatin (alone or in association with cholestyramine). A 1-year study in 66 patients with type II hyperlipoproteinaemia. Eur Heart J 11: 149–155

    PubMed  CAS  Google Scholar 

  • Fellin R, Baggio G, Briani G, Baiocchi MR, Manzato E, Baldo G, Crepaldi G (1978) Long-term trial with colestipol plus clofibrate in familial hypercholesterolemia. Atherosclerosis 29: 241–249

    PubMed  CAS  Google Scholar 

  • Fischer S, Hanefeld M, Lang PD, Fucker K, Bergmann S, Gehrisch S, Leonhardt W, Jaroß W (1990) Efficacy of a combined bezafibrate retard-cholestyramine treatment in patients with hypercholesterolemia. Arzneimittelforschung 40: 469–472

    PubMed  CAS  Google Scholar 

  • Forland SC, Feng Y, Cutler RE (1990) Apparent reduced absorption of gemfibrozil when given with colestipol. J Clin Pharmacol 30: 29–32

    PubMed  CAS  Google Scholar 

  • Friedman H, Greenblatt DJ, LeLuc BW (1989) Impaired absorption of tetracycline by colestipol is not reversed by orange juice. J Clin Pharmacol 29: 748–751

    PubMed  CAS  Google Scholar 

  • Gallo DC, Bailey KR, Sheffner AL (1965) The interaction between cholestyramine and drugs. Proc Exp Biol Med 120: 60–65

    CAS  Google Scholar 

  • Geisel J, Oette K, Burrichter H (1990) HMG-CoA-Reduktase-Inhibitoren bei familiärer Hypercholesterinämie. Fortschr Med 108: 69–72

    Google Scholar 

  • Gerio R, Murphy GM, Sladen GE, MacDonald DM (1987) A combination of phototherapy and cholestyramine for the relief of pruritus in primary biliary cirrhosis. Br J Dermatol 116: 265–267

    Google Scholar 

  • Glueck CJ, Ford S, Schel D, Steiner P (1972) Colestipol and cholestyramine resin. Comparative effects in familial type II hyperlipoproteinemia. JAMA 222: 676–681

    CAS  Google Scholar 

  • Glueck CJ, Fallat RW, Tsang RC (1973) Pediatric familial type II hyperlipopro- teinemia: therapy with diet and cholestyramine resin. Pediatrics 52: 669–679

    PubMed  CAS  Google Scholar 

  • Glueck CJ, Fallat RW, Tsang RC (1976) Treatment of hyperlipoproteinemia in children In: Paoletti R, Glueck CJ (eds) Medical chemistry, lipid pharmacology, vol 2. Academic, New York, pp 257–275

    Google Scholar 

  • Glueck CJ, Fallat RW, Mellies M, Tsang RC (1976) Pediatric familial type II hyper- lipoproteinemia: therapy with diet and colestipol resin. Pediactrics 57: 68–74

    CAS  Google Scholar 

  • Glueck CJ, Mellies MJ, Dine M, Perry T, Laskarzewski P (1986) Safety and efficacy of long-term diet and diet plus bile acid-binding resin cholesterol-lowering therapy in 73 children heterozygous for familial hypercholesterolemia. Pediatrics 78: 338–348

    PubMed  CAS  Google Scholar 

  • Goldfarb S, Pitot HC (1972) Stimulatory effect of dietary lipid and cholestyramine on hepatic HMG CoA reductase. J Lipid Res 13: 797–801

    PubMed  CAS  Google Scholar 

  • Goldstein JL, Brown MS (1989) Familial hypercholesterolemia. In: Scriver CR, Beandat AL, Sly WS, Valle D (eds) The metabolic basis of inherited disease, 6th edn. McGraw-Hill, New York, pp 1215–1250

    Google Scholar 

  • Groot PH, Dijkhuis-Stoffelsma R, Grose WFA, Ambagtsheer JJ, Fernandes J (1983) The effects of colestipol hydrochloride on serum lipoprotein lipid and apolipoprotein B and A-I concentrations in children heterozygous for familial hypercholesterolemia. Acta Paedriatr Scand 72: 81–85

    CAS  Google Scholar 

  • Gross L, Brotman M (1970) Hypoprothrombinemia and hemorrhage associated with cholestyramine therapy. Ann Intern Med 72: 95–96

    PubMed  CAS  Google Scholar 

  • Gross L, Figueredo R (1973) Long-term cholesterol-lowering effect of colestipol resin in humans. J Am Geriatr Soc 21: 552–556

    PubMed  CAS  Google Scholar 

  • Grundy SM, Ahrens EH, Salen G (1971) Interruption of the enterohepatic circulation of bile acids in man: comparative effects of cholestyramine and ileal exclusion on cholesterol metabolism. J Lab Clin Med 78: 94–121

    PubMed  CAS  Google Scholar 

  • Grundy SM, Vega GL, Bilheimer DW (1985) Influence of combined therapy with mevinolin and interruption of bile-acid reabsorption on low density lipoproteins in heterozygous familial hypercholesterolemia. Ann Intern Med 103: 339–343

    PubMed  CAS  Google Scholar 

  • Guentert TW, Defoin R, Mosberg H (1988) The influence of cholestyramine on the elimination of tenoxicam and piroxicam. Eur J Clin Pharmacol 34: 283–289

    PubMed  CAS  Google Scholar 

  • Gylling H, Vanhanen H, Miettinen TA (1989) Effects of acipimox and cholestyramine on serum lipoproteins, non-cholesterol sterols and cholesterol absorption and elimination. Eur J Clin Pharmacol 37: 111–115

    PubMed  CAS  Google Scholar 

  • Hahn KJ, Edian W, Schettle M (1972) Effect of cholestyramine on the gastrointestinal absorption of phenprocoumon and acetylosalicylic acid in man. Eur J Clin Pharmacol 4: 142–145

    PubMed  CAS  Google Scholar 

  • Harmon SM, Seifert CF (1991) Levothyroxine—cholestyramine interaction reemphasized. Ann Intern Med 115: 658–659

    PubMed  CAS  Google Scholar 

  • Hartline JV (1976) Hyperchloremia, metabolic acidosis, and cholestyramine, J Pediatr 89: 155

    PubMed  CAS  Google Scholar 

  • Harvengt C, Desager JP (1976) Colestipol in familial type II hyperlipoproteinemia. A three-year trial. Clin Pharmacol Ther 20: 310–314

    CAS  Google Scholar 

  • Hashim SA, Van Itallíe TB (1965) Cholestyramine resin therapy for hypercholesterolemia. JAMA 192: 289–293

    PubMed  CAS  Google Scholar 

  • Hashim SA, Bergen SS, Van Itallie TB (1961) Experimental steatorrhea induced in man by bile acid sequestrant. Proc Soc Exp Biol Med 106: 173–175

    PubMed  CAS  Google Scholar 

  • Heaton KW, Lever JV, Barnard RE (1972) Osteomalacia associated with cho- lestyramine therapy for postileectomy diarrhea. Gastroenterology 62: 642–646

    PubMed  CAS  Google Scholar 

  • Herman RJ, Chaudhary A (1991) In vitro binding of lorazepam and lorazepam glucuronide to cholestyramine, colestipol, and activated charcoal. Pharm Res 8: 538–540

    PubMed  CAS  Google Scholar 

  • Hill ID, Mann MD, Househam KC, Bowie MD (1986) Use of oral gentamycin, metronidazole, and cholestyramine in the treatment of severe persistent diarrhea in infants. Pediatrics 77: 477–481

    PubMed  CAS  Google Scholar 

  • Hoeg JM (1991) Pharmacologic and surgical treatment of dyslipidemic children and adolescents. Ann NY Acad Sci 623: 275–284

    PubMed  CAS  Google Scholar 

  • Hoogwerf BJ, Peters JR, Frantz ID, Hunninghake DB (1985) Effect of clofibrate and colestipol singly and in combination on plasma lipids and lipoproteins in type III hyperlipoproteinemia. Metabolism 34: 978–981

    PubMed  CAS  Google Scholar 

  • Howard RF, Brusco OJ, Furman RH (1966) Effect of cholestyramine administration on serum lipids and on nitrogen balance in familial hypercholesterolemia. J Lab Clin Med 68: 12–20

    PubMed  CAS  Google Scholar 

  • Hunninghake DB (1980) Hypolipidemic drugs. In: Cluff LE, Petrie JC (eds) Clinical effects of interaction between drugs. Elsevier North-Holland, Amsterdam

    Google Scholar 

  • Hunninghake DB (1990) Drug treatment of dyslipoproteinemia. Endocrinol Metab Clin North Am 19: 345–360

    PubMed  CAS  Google Scholar 

  • Hunninghake DB, King S (1978) Effect of cholestyramine and colestipol on the absorption of methyldopa and hydrochlorothiazide. Pharmacologist 20: 220

    Google Scholar 

  • Hunninghake DB, Pollack EW (1977) Effect of bile acid sequestering agents on the absorption of aspirin, tolbutamide and warfarin. Fed Proc 35: 996

    Google Scholar 

  • Hunninghake DB, Probstfield JL (1977) Drug treatment of hyperlipoproteinemia. In: Rifkind BM, Levy RI (eds) Hyperlipidemia: diagnosis and therapy. Grune and Stratton, New York, pp 327–362

    Google Scholar 

  • Hunninghake DB, Bell C, Olson L (1981) Effects of colestipol and clofibrate, singly and in combination, on plasma lipid and lipoproteins in type Ilb hyperlipoproteinemia. Metabolism 30: 610–615

    PubMed  CAS  Google Scholar 

  • Illingworth DR (1984) Mevinolin plus colestipol in therapy for severe heterozygous familial hypercholesterolemia. Ann Intern Med 101: 598–604

    PubMed  CAS  Google Scholar 

  • Illingworth DR (1990) Management of hyperlipidemia: goals for the prevention of atherosclerosis. Clin Invest Med 13: 211–218

    PubMed  CAS  Google Scholar 

  • Illingworth DR (1987) Lipid lowering drugs: an overview of indications and optimum therapeutic use. Drugs 33: 259–279

    PubMed  CAS  Google Scholar 

  • Illingworth Dr, Bacon S (1989) Treatment of heterozygous familial hypercho– lesterolemia with lipid–lowering drugs. Arteriosclerosis 9 Suppl 1:1–121–134

    Google Scholar 

  • Illingworth DR, Rapp JH, Phillipson BE, Connor WE (1981) Colestipol plus nicotinic acid in treatment of heterozygous familial hypercholesterolaemia. Lancet 1: 296–298

    PubMed  CAS  Google Scholar 

  • Insull W, Marquis NR, Tsianco MC (1991) Comparison of the efficacy of questran light, a new formulation of cholestyramine powder, to regular questran in maintaining lowered plasma cholesterol levels. Am J Cardiol 67: 501–505

    PubMed  CAS  Google Scholar 

  • Ismail E, Corder CN, Epstein S, Barbi G, Thomas S (1990) Effects of pravastatin and cholestyramine on circulating levels of parathyroid hormone and vitamine D metabolites. Clin Ther 12: 427–430

    PubMed  CAS  Google Scholar 

  • Jacob BG, Richter WO, Schwandt P (1990) Lovastatin, pravastatin, and serum lipoprotein(a). Ann Intern Med 112: 713–714

    PubMed  CAS  Google Scholar 

  • Jacob BG, Möhrle W, Richter WO, Schwandt P (1992) Short-and long-term effects of lovastatin and pravastatin alone and in combination with cholestyramine on serum lipids, lipoproteins and apolipoproteins in primary hypercholesterolaemia. Eur J Clin Pharmacol 42: 353–358

    PubMed  CAS  Google Scholar 

  • Jay RH, Rampling MW, Betteridge DJ (1990) Abnormalities of blood rheology in familial hypercholesterolaemia: effects of treatment. Atherosclerosis 85: 249–256

    PubMed  CAS  Google Scholar 

  • Jay RH, Sturley RH, Stirling C, McGarrigle HHG, Katz M, Reckless JPD, Betteridge DJ (1991) Effects of pravastatin and cholestyramine on gonodal and adrenal steroid production in familial hypercholesterolaemia. Br J Clin Pharmacol 32: 417–422

    PubMed  CAS  Google Scholar 

  • Jones AF, Hughes EA, Cramb R (1988) Gemfibrozil plus cholestyramine in familial hypercholesterolaemia. Lancet 1: 776

    PubMed  CAS  Google Scholar 

  • Kane JP, Malloy MJ, Tun P, Phillips NR, Freedman DD, Williams ML, Rowe JS, Havel RJ (1981) Normalization of low-density-lipoprotein levels in heterozygous familial hypercholesterolemia with a combined drug regimen. N Engl J Med 304: 251–258

    PubMed  CAS  Google Scholar 

  • Kauffman RE, Azarnoff DL (1973) Effect of colestipol on gastrointestinal absorption of chlorothiazide in man. Clin Pharmacol Ther 14: 886–890

    PubMed  CAS  Google Scholar 

  • Keighley MRB (1980) Antibiotic-associated pseudomembraneous colitis: pathogenesis and management. Drugs 20: 49–56

    PubMed  CAS  Google Scholar 

  • King CY, Barriere SL (1981) Analysis of the in vitro interaction between vancomycin and cholestyramine. Antimicrob Agents Chemother 19: 326–327

    PubMed  CAS  Google Scholar 

  • Kivisto KT, Neuvonen PJ (1990) The effect of cholestyramine and activated charcoal on glipizide absorption. Br J Clin Pharmacol 30: 733–736

    PubMed  CAS  Google Scholar 

  • Kleinmann PK (1974) Cholestyramine and metabolic acidosis. N Engl J Med 290: 861

    Google Scholar 

  • Kreutzer EW, Milligan FD (1978) Treatment of antibiotic-associated pseudomem-braneous colitis with cholestyramine resin. Johns Hopkins Med J 143: 67–72

    PubMed  CAS  Google Scholar 

  • Kunimoto D, Thomson ABR (1986) Recurrent clostridium difficile-associated colitis responding to cholestyramine. Digestion 33: 225–228

    PubMed  CAS  Google Scholar 

  • Kuo PT, Hayase K, Kostis JB, Moreyra AE (1979) Use of combined diet and colestipol in long-term (7–71/2 years) treatment of patients with type II hyperlipoproteinemia. Circulation 59: 199–211

    PubMed  CAS  Google Scholar 

  • Kuo PT, Kostis JB, Moreyra AE, Hayes JA (1981) Familial type II hyperlipoproteinemia with coronary heart disease. Chest 79: 286–291

    PubMed  CAS  Google Scholar 

  • Kuo PT, Wilson AC, Kostis JB, Moreyra AE (1986) Effects of combined probucolcolestipol treatment for familial hypercholesterolemia and coronary artery disease. Am J Cardiol 57: 43H - 48H

    PubMed  CAS  Google Scholar 

  • Kwiterovich PO (1990) Diagnosis and management of familial dyslipoproteinemia in children and adolescents. Pediatr Clin North Am 37: 1489–1521

    PubMed  Google Scholar 

  • Lees AM, McCluskey MA, Lees RS (1976) Results of colestipol therapy in type II hyperlipoproteinemia. Atherosclerosis 24: 129–140

    PubMed  CAS  Google Scholar 

  • Leren TP, Hjermann I, Berg K, Leren P, Foss OP, Viksmoen L (1988) Effects of lovastatin alone and in combination with cholestyramine on serum lipids and apolipoproteins in heterozygotes for familial hypercholesterolemia. Atherosclerosis 73: 135–141

    PubMed  CAS  Google Scholar 

  • Levy RI (1970) Dietary and drug treatment of primary hyperlipoproteinemia. Ann Intern Med 77: 267–294

    Google Scholar 

  • Levy RI, Langer T (1972) Hypolipidemic drugs and lipoprotein metabolism. Adv Exp Med Biol 26: 155–163

    PubMed  CAS  Google Scholar 

  • Levy RI, Fredrickson DS, Stone NJ, Bilheimer DW, Brown WF, Glueck CJ, Gotto AM, Herbert PN, Kwiterovich PO, Langer T, LaRosa J, Lux SE, Rider AK, Shulman RS, Slone HR (1973) Cholestyramine in type II hyperlipoproteinemia — a double-blind trial. Ann Intern Med 79: 51–58

    PubMed  CAS  Google Scholar 

  • Levy RI, Brensike JF, Epstein SE, Kelsey SF, Passamani ER, Richardson JM, Loh IK, Stone NJ, Aldrich RF, Battaglini JW, Moriarty DJ, Fisher ML, Friedman L, Friedewald W, Detre KM (1984) The influence of changes in lipid values induced by cholestyramine and diet on progression of coronary artery disease: results of the NHLBI Type II Coronary Intervention Study. Circulation 69: 325–337

    PubMed  CAS  Google Scholar 

  • Linet OI, Grzegorczyk CR, Demke DM (1988) The effect of encapsulated, low-dose colestipol in patients with hyperlipidemia. J Clin Pharmacol 28: 804–806

    PubMed  CAS  Google Scholar 

  • Longenecker JB, Basu SG (1965) Effect of cholestyramine on absorption of amino acids and vitamin A in man. Fed Proc 24: 375

    Google Scholar 

  • Mabuchi H, Sakao T, Sakai Y, Yoshimura A, Watanabe A, Wakasugi T, Koizumi J, Takeda R (1983) Reduction of serum cholesterol in heterozygous patients with familial hypercholesterolemia. Additive effects of compactin and cholestyramine. N Engl J Med 308: 609–613

    PubMed  CAS  Google Scholar 

  • Malloy MJ, Kane JP, Kunitake ST, Tun P (1987) Complementarity of colestipol, niacin, and lovastatin in treatment of severe familial hypercholesterolemia. Ann Intern Med 107: 616–623

    PubMed  CAS  Google Scholar 

  • Malmendier CL, Delcroix C, Lontie JF (1987) The effect of combined fenofibrate and cholestyramine therapy on low-density lipoprotein kinetics in familial hypercholesterolemia patients. Clin Chim Acta 162: 221–227

    PubMed  CAS  Google Scholar 

  • McCullough AJ, Barron D, Mullen KD, Petrelli M, Park MC, Mukhtar H, Bickers DR (1988) Fecal protoporphyrin excretion in erythropoietic protoporphyria: effect of cholestyramine and bile acid feeding. Gastroenterology 94: 177–181

    PubMed  CAS  Google Scholar 

  • Miller NE, Clifton-Bligh P, Nestel PJ (1973) Effects of colestipol, a new bile-acid sequestering resin, on cholesterol metabolism in man. J Lab Clin Med 82: 876–890

    PubMed  CAS  Google Scholar 

  • Mishkel MA, Crowther SM (1977) Long-term therapy of diet-resistant hypercholesterolemia with colestipol. Curr Ther Res 22: 398–412

    Google Scholar 

  • Mölgaard J, Lundh BL, von Schenck H, Olsson AG (1991) Long-term efficacy and safety of simvastatin alone and in combination therapy in treatment of hypercholesterolaemia. Atherosclerosis 91: S21 — S28

    PubMed  Google Scholar 

  • Moore RB, Crane CA, Frantz ID (1968) Effect of cholestyramine on the fecal excretion of intravenously administrated cholesteroli4C and its degradation products in a hypercholesterolemic patient. J Clin Invest 47: 1664–1671

    PubMed  CAS  Google Scholar 

  • Mordasini R, Twelsiek F, Oster P, Schellenberg B, Raetzer H, Heuck CC, Schlierf G (1978) Abnormal low density lipoproteins in children with familial hypercholesterolemia — effect of polyanion exchange resins. Klin Wochenschr 56: 805–808

    PubMed  CAS  Google Scholar 

  • Myant NB, Mitropoulos KA (1977) Cholesterol 7alpha-hydroxylase. J Lipid Res 18: 135–153

    PubMed  CAS  Google Scholar 

  • Nash DT, Gensini G, Esente P (1982) Effect of lipid-lowering therapy on the progression of coronary atherosclerosis assessed by scheduled repetitive coronary arteriography. Int J Cardiol 2: 43–55

    PubMed  CAS  Google Scholar 

  • Neuvonen PJ, Kivisto K, Hirvisalo EL (1988) Effects of resins and activated charcoal on the absorption of digoxin, carbamazepine and frusemide. Br J Clin Pharmacol 25: 229–233

    PubMed  CAS  Google Scholar 

  • Nguyen LB, Cobb M, Shefer S, Salen G, Ness GC, Tint GS (1991) Regulation of cholesterol biosynthesis in sitosterolemia: effects of lovastatin, cholestyramine, and dietary sterol restriction. J Lipid Res 32: 1941–1948

    PubMed  CAS  Google Scholar 

  • Nitsch J, Lüderitz B (1986) Beschleunigte Elimination von Amiodaron durch Colestyramin. Dtsch Med Wochenschr 111: 1241–1244

    PubMed  CAS  Google Scholar 

  • Norris RM, Dunn GH, Hearron AE (1987) Very low dose colestid in gelatin capsules effectively reduces low density cholesterol in hypercholesterolemic men. Diabetes 36 Suppl 1: 180A

    Google Scholar 

  • Northcutt C, Stiel NJ, Hollifield JW, Stant EG (1969) The influence of cholestyramine on thyroxine absorption. JAMA 208: 1857–1861

    PubMed  CAS  Google Scholar 

  • Nye ER, Jackson D, Hunter JD (1972) Treatment of hypercholesterolemia with colestipol: a bile sequestrating agent. N Z Med J 76: 12–16

    PubMed  CAS  Google Scholar 

  • Packard CJ, Stewart JM, Morgan HG, Lorimer AR, Shepherd J (1980) Combined drug therapy for familial hypercholesterolemia. Artery 7: 281–289

    PubMed  CAS  Google Scholar 

  • Pan HY, DeVault AR, Swites BJ, Whigan D, Ivashkiv E, Willard DA, Brescia D (1990) Pharmacokinetics and pharmacodynamics of pravastatin alone and with cholestyramine in hypercholesterolemia. Clin Pharmacol Ther 48: 201–207

    PubMed  CAS  Google Scholar 

  • Pantosti A, Luzzi I, Cardines R, Gianfrilli P (1985) Comparison of the in vitro activities of teicoplanin and vancomycin against clostridium difficile and their interactions with cholestyramine. Antimicrob Agents Chemother 28: 847–848

    PubMed  CAS  Google Scholar 

  • Parkinson TM, Gunderson K, Nelson NA (1970) Effects of colestipol (U-26597A), a new bile acid sequestrant, on serum lipids in experimental animals and man. Atherosclerosis 11: 531–537

    PubMed  CAS  Google Scholar 

  • Pattison M, Lee SM (1987) Life-threatening metabolic acidosis from cholestyramine in an infant with renal insufficiency. Am J Dis Child 141: 479–480

    PubMed  CAS  Google Scholar 

  • Peters JR, Hunninghake DB (1985) Effect of time of administration of cholestyramine on plasma lipids and lipoproteins. Artery 13: 1–6

    PubMed  CAS  Google Scholar 

  • Pruksananonda P, Powell KR (1989) Multiple relapses of clostridium difficile-associated diarrhea responding to an extended course of cholestyramine. Pediatr Infect Dis J 8: 175–178

    PubMed  CAS  Google Scholar 

  • Rabelink AJ, Hene RJ, Erkelens DW, Joles JA, Koomans HA (1988) Effects of simvastatin and cholestyramine on lipoprotein profile in hyperlipidaemia of nephrotic syndrome. Lancet 2: 1335–1338

    PubMed  CAS  Google Scholar 

  • Reihener E, Angelin B, Rudling M, Ewerth S, Björkhem I, Einarsson K (1990) Regulation of hepatic cholesterol metabolism in humans: stimulatory effects of cholestyramine to HMG-CoA reductase activity and low density lipoprotein receptor expression in gallstone patients. J Lipid Res 31: 2219–2226

    Google Scholar 

  • Robinson DS, Benjamin DM, McCormack JJ (1971) Interaction of warfarin and nonsystemic gastrointestinal drugs. Clin Pharmacol Ther 12: 491–495

    PubMed  CAS  Google Scholar 

  • Ros E, Zambon D, Bertomeu A, Cuso E, Sanllehy C, Casals E (1991) Comparative study of a microporous cholestyramine analogue ( Filicol) and gemfibrozil treatment of severe primary hypercholesterolemia. Arch Intern Med 151: 301–305

    PubMed  CAS  Google Scholar 

  • Rose HG, Haft GK, Juliano J (1976) Clofibrate-induced low density lipoprotein elevation. Therapeutic implications and treatment by colestipol resin. Atherosclerosis 23: 413–427

    CAS  Google Scholar 

  • Runeberg L, Miettinen TA, Nikkilä EA (1972) Effect of cholestyramine on mineral excretion in man. Acta Med Scand 192: 71–76

    PubMed  CAS  Google Scholar 

  • Ryan JR, Jain AK, McMahon FG (1975) Long-term treatment of hypercholes-terolemia with colestipol hydrochloride. Clin Pharmacol Ther 17: 83–87

    PubMed  CAS  Google Scholar 

  • Sachs BA, Wolfman L (1973) Response of hyperlipoproteinemia to colestipol. NY State J Med 73: 1068–1070

    CAS  Google Scholar 

  • Sachs BA, Wolfman L (1974) Colestipol therapy of hyperlipidemia in man. Proc Soc Exp Biol Med 1747: 694–697

    Google Scholar 

  • Schlierf G, Mrozik K, Heuck CC, Middelhoff G, Oster P, Riesen W, Schellenberg B (1982) Low-dose colestipol in children, adolescents and young adults with familial hypercholesterolemia. Atherosclerosis 41: 133–138

    PubMed  CAS  Google Scholar 

  • Schlierf G, Vogel G, Kohlmeier M, Vuilleumier JP, Hiippe R, Schmidt-Gayk H (1985) Langzeittherapie der familiären Hypercholesterinämie bei Jugendlichen mit Colestipol: Versorgungszustand mit Mineralstoffen and Vitaminen. Klin Wochenschr 63: 802–806

    CAS  Google Scholar 

  • Schwartzkopff W, Bimmermann A, Schleicher J (1990) Comparison of the effectiveness of the HMG CoA reductase inhibitors pravastatin versus cholestyramine in hypercholesterolemia. Drug Res 40: 1322–1327

    CAS  Google Scholar 

  • Schwarz KB, Goldstein PD, Witztum JL, Schonfeld G (1980) Fat-soluble vitamin concentrations in hypercholesterolemic children treated with colestipol. Pediatrics 65: 243–250

    PubMed  CAS  Google Scholar 

  • Seplowitz A, Smith FR, Berns L, Eder HA, Goodman DS (1981) Comparison of the effect of colestipol hydrochloride and clofibrate on plasma lipids and lipoproteins in the treatment of hypercholesterolemia. Atherosclerosis 39: 35–43

    PubMed  CAS  Google Scholar 

  • Series JJ, Caslake MJ, Kilday C, Cruickshank A, Demant T, Lorimer AR, Packard CJ, Shepherd J (1989) Effect of combined therapy with bezafibrate and cholestyramine on low-density lipoprotein metabolism in type Ila hypercholesterolemia. Metabolism 38: 153–158

    PubMed  CAS  Google Scholar 

  • Series JJ, Gaw A, Kilday C, Bedford DK, Lorimer AR, Packard CJ, Shepherd J (1990) Acipimox in combination with low dose cholestyramine for the treatment of type II hyperlipidaemia. Br J Clin Pharmacol 30: 49–54

    PubMed  CAS  Google Scholar 

  • Shaefer MS, Jungnickel PW, Miwa LJ, Marquis NR, Hutton GD (1990) Sensory/ mixability preference evaluation of cholestyramine powder formulations. DICP Ann Pharmacother 24: 472–474

    CAS  Google Scholar 

  • Shepherd J (1989) Mechanism of action of bile acid sequestrants and other lipid-lowering drugs. Cardiology 76 Suppl 1: 65–74

    Google Scholar 

  • Shepherd J, Packard CJ (1983) Mode of action of lipid-lowering drugs. In: Miller NE (ed) Atherosclerosis: mechanisms and approaches to therapy. Raven, New York, pp 169–201

    Google Scholar 

  • Shepherd J, Packard Cl, Bicker S, Lawrie TDV, Morgan HG (1980) Chole styramine promotes receptor-mediated low-density-lipoprotein catabolism. N Engl J Med 302: 1219–1222

    PubMed  CAS  Google Scholar 

  • Sinatra F, Buntain WL, Mitchell CH, Sunshine P (1976) Cholestyramine treatment of pseudomembraneous colitis. J Pediatr 88: 304–306

    PubMed  CAS  Google Scholar 

  • Sirtori M, Franceschini G, Gianfranceschi G, Montanari G, Cocuzza E, Sirtori CR (1982) Microporous cholestyramine in suspension form. Lancet 2: 383

    PubMed  CAS  Google Scholar 

  • Sirtori M, Pazzucconi F, Gianfranceschi G, Sirtori CR (1991) Efficacy of cholestyramine does not vary when taken before or during meal. Atherosclerosis 88: 249–252

    PubMed  CAS  Google Scholar 

  • Sommariva D, Bonfiglioli D, Tirrito M, Pogliaghi I, Branchi A, Cabrini E (1986) Probucol and cholestyramine combination in the treatment of severe hypercholesterolemia. Int J Clin Pharmacol Ther Toxicol 24: 505–510

    PubMed  CAS  Google Scholar 

  • Spengel FA, Jadhav A, Duffield RGM, Wood CB, Thompson GR (1981) Superiority of partial ileal bypass over cholestyramine in reducing cholesterol in familial hypercholesterolemia. Lancet 2: 768–771

    PubMed  CAS  Google Scholar 

  • Stein E, Kreisberg R, Miller V, Mantell G, Washington L, Shapiro DR (1990) Effects of simvastatin and cholestyramine in familial and nonfamilial hypercholesterolemia. Arch Intern Med 150: 341–345

    PubMed  CAS  Google Scholar 

  • Steinhagen-Thiessen E, Müller S, Holler HD, Lang PD (1987) Effect of bezafibrate and cholestyramine in patients with primary hypercholesterolemia. Arzneimittelforschung 37: 726–728

    PubMed  CAS  Google Scholar 

  • Sweeney ME, Fletcher BJ, Rice CR, Berra KA, Rudd CM, Fletcher GF, Superko RS (1991) Efficacy and compliance with cholestyramine bar versus powder in the treatment of hyperlipidemia. Am J Med 90: 469–473

    PubMed  CAS  Google Scholar 

  • The Lipid Research Clinic Program (1984) The Lipid Research Clinics Coronary Primary Prevention Trial results: I. Reduction in incidence of coronary heart disease. JAMA 251: 351–364

    Google Scholar 

  • The Lipid Reserach Clinics Program (1984) The Lipid Research Clinics Coronary Primary Prevention Trial results: II. The relationship of reduction in incidence of coronary heart disease to cholesterol lowering. JAMA 251: 365–374

    Google Scholar 

  • The Lovastatin Study Group III (1988) A multicenter comparison of Lovastatin and cholestyramine therapy for severe primary hypercholesterolemia. JAMA 260: 359–366

    Google Scholar 

  • Tikkanen MJ, Nikkilä EA (1987) Current pharmacologic treatment of elevated serum cholesterol. Circulation 76: 529–533

    PubMed  CAS  Google Scholar 

  • Tsang RC, Roginsky MS, Mellies MJ, Glueck CJ (1978) Plasma 25-hydroxy-vitamin D in familial hypercholesterolemic children receiving colestipol resin. Pedriatr Res 12: 980–982

    CAS  Google Scholar 

  • Vega GL, Grundy SM (1987) Treatment of primary moderate hypercholesterolemia with lovastatin (mevinolin and colestipol). JAMA 257: 33–38

    CAS  Google Scholar 

  • Visintine RE, Michaels GD, Fukayama G et al. (1961) Xanthomatous biliary cirrhosis treated with cholestyramine. Lancet 2: 341–343

    PubMed  CAS  Google Scholar 

  • Wallentin L (1978) Lecithin: cholesterol acyl transfer rate and high density lipoproteins in plasma during dietary and cholestyramine treatment of type IIa hyperlipoproteinemia. Eur J Clin Invest 8: 833–839

    Google Scholar 

  • Weintraub MS, Eisenberg S, Breslow J (1987) Different patterns of postprandial lipoprotein metabolism in normal, type Ila, type III, and type IV hyperlipoproteinemic individuals. J Clin Invest 79: 1110–1119

    PubMed  CAS  Google Scholar 

  • Weisweiler P, Schwandt P (1986) Colestipol plus fenofibrate versus synvinolin in familial hypercholesterolaemia. Lancet 2: 1212–1213

    PubMed  CAS  Google Scholar 

  • Weisweiler P, Neureuther G, Schwandt P (1979) The effect of cholestyramine on lipoprotein lipids in patients with primary type Ila hyperlipoproteinemia. Atherosclerosis 33: 295–300

    PubMed  CAS  Google Scholar 

  • Wells RF, Knepshield JH, Davis C (1968) Right upper quadrant calcification in a patient receiving long term cholestyramine therapy for primary biliary cirrhosis. Am J Dig Dis 13: 86–94

    PubMed  CAS  Google Scholar 

  • West RI, Lloyd JK (1975) The effect of cholestyramine on intestinal absorption. Gut 16: 93–98

    PubMed  CAS  Google Scholar 

  • West RJ, Lloyd JK (1980) Long-term follow-up of children with familial hypercholesterolemia treated with cholestyramine. Lancet 2: 873–875

    PubMed  CAS  Google Scholar 

  • Wiklund O, Angelin B, Olofsson SO, Eriksson M, Fager G, Berglund L, Bondjers G (1990) Apolipoprotein(a) and ischaemic heart disease in familial hypercholesterolaemia. Lancet 335: 1360–1363

    PubMed  CAS  Google Scholar 

  • Witztum JL, Schonfeld G, Weidman SW (1976) The effect of colestipol on the metabolism of very-low-density lipoproteins in man. J Lab Clin Med 88: 1008–1018

    PubMed  CAS  Google Scholar 

  • Witztum JL, Schonfeld G, Weidman SW, Giese WE, Dillingham MA (1979) Bile sequestrants therapy alters the composition of low density and high density lipoproteins. Metabolism 28: 221–229

    PubMed  CAS  Google Scholar 

  • Witztum JL, Simmons D, Steinberg D, Beltz WF, Weinreb R, Young SG, Lester P, Kelly N, Juliano J (1989) Intensive combination drug therapy of familial hyperchoelsterolemia with lovastatin, probucol, and colestipol hydrochloride. Circulation 79: 16–28

    PubMed  CAS  Google Scholar 

  • Young SG, Witztum JL, Carew TE, Krauss RW, Lindgren FT (1989) Colestipolinduced changes in LDL composition and metabolism. II. Studies in humans. J Lipid Res 30: 225–238

    Google Scholar 

  • Ytre-Arne K, Nordoy A (1989) Simvastatin and cholestyramine in the long-term treatment of hypercholesterolaemia. J Intern Med 226: 285–290

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schwandt, P., Richter, W.O. (1994). Ion Exchange Resins. In: Schettler, G., Habenicht, A.J.R. (eds) Principles and Treatment of Lipoprotein Disorders. Handbook of Experimental Pharmacology, vol 109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78426-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78426-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78428-6

  • Online ISBN: 978-3-642-78426-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics