The Significance of Perceptual Multistability for Research on Cognitive Self-Organization

  • P. Kruse
  • D. Strüber
  • M. Stadler
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 64)


Perceptual order formation is a process of self-organization in a complex neural network and not a pick up of external information. In this view any stimulus condition is multistable. Stimuli are only boundary conditions of the autonomous process of perceptual order formation. Stability in perception is the result of a fast converging process of autonomous order formation which normally acts on a time scale far beyond conscious realization. Multistability in perception is an exceptional case in which the process of order formation (confronted with one constant boundary condition) spontaneously oscillates between two or more attractors established in the system dynamics. The spontaneous reversions in perceptual multistability show characteristics of nonlinear phase transitions and can be simulated with a high degree of correspondence on basis of self-organizing networks and synergetic modelling. In everyday experience multistability in perception is a relatively irrelevant curiosity but for investigating the process of order formation in cognition multistability is a paradigmatical research tool. Perceptual multistability can be used as a window to the underlying neural system dynamics. In a variety of different experiments the possibility is shown to change the potential landscape of the system dynamics in multistable perception by learning, context and meaning. The reversion process is discussed as an indicator for innersystemic fluctuations. Some hypothetical links to pathological phenomena in cognition are outlined.


Dopamine Schizophrenia Catecholamine Haloperidol Parkin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Basar-Eroglu, C., Striiber, D., Stadler, M., Kruse, P. & Basar, E. (1993): Multistable visual perception induces a sliw positive EEG wave. International Journal of Neuroscience 73, 139–151.CrossRefGoogle Scholar
  2. Berger, H.J.C., van Hoof, J.J.M., van Spaendonck, K.P.M., Horstink, M.W.I., van den Bercken, J.H.L., Jaspers, R. & Cools, A.R. (1989): Haloperidol and cognitive shifting. Neuropsychologica 27, 629–639.CrossRefGoogle Scholar
  3. Bergum, J.E. & Bergum B.O. (1980): Reliability of reversal rates as a measure of perceptual stability. Perceptual and Motor Skills 50, 1038.CrossRefGoogle Scholar
  4. Calvert, J.E., Harris, J.P., Phillipson, O.T., Babiker, I.E., Ford, M.F. & Antebi, D.L. (1988): The perception of visual ambiguous figures in schizoprenia and Parkinson’s disease. International Clinical Psychopharmacology 3, 131–150.CrossRefGoogle Scholar
  5. Carlsson, A. (1974): Antipsychotic drugs and catecholamine synapses. Journal of Psychiatrical Research 11, 57–64.CrossRefGoogle Scholar
  6. Crawford, H.J. (1989): Cognitive and physiological flexibility: Multiple pathways to hypnotic responsiveness. In: V.A. Gheorghiu, P. Netter, H.J.Eysenk & R. Rosenthal (Eds.), Suggestion and Suggestibility: Theory and Research, pp. 155–167. Berlin: Springer.Google Scholar
  7. Cools, A.R., van den Bercken, Horstink, M.W.I., van Spaendonck, K.P.M. & Berger, H.J.C. (1984): Cognitive and motor shifting aptitude disorder in Parkinson’s disease. Journal of Neurology, Neurosurgery, and Psychiatry 47, 443–453.CrossRefGoogle Scholar
  8. Ditzinger, T. & Haken, H. (1994): A synergetic model of multistability in perception. In this volume.Google Scholar
  9. Emrich, H.M. & Dirlich, G. (1993): Systemtheoretische Modellierung psychotischer Bewußtseinsstörungen. Paper presented at the Symposion Gehirn, Geist, Bewußtsein. GMD, Bonn.Google Scholar
  10. Elbert, T., Lutzenberger, W., Rockstroh, B., Berg, P. & Cohen, R. (1992): Physical aspects of the EEG in schizophrenics. Biological Psychiatry 32, 181–193.CrossRefGoogle Scholar
  11. Feingold, E. (1982): Untersuchungen zur sensorischen Suggestibilität sowie zum Zusammenhang zwischen sensorischer Suggestibilität und der Placebo-Ansprechbarkeit im Schmerzbereich. Doctoral dissertation, Mainz.Google Scholar
  12. Gheorghiu, V.A. & Kruse, P. (1991): The psychology of suggestion: An integrative perspective. In: J.F. Schumaker (Ed.), Human Suggestibility. Advances in Theory, Research, and Application, pp. 59–75. New York: Routledge.Google Scholar
  13. Gräser, H. (1977): Spontane Reversionsprozesse in der Figuraahrnehmung. Doctoral dissertation, Trier.Google Scholar
  14. Klintman, H. (1984): Original thinking and ambiguous figure reversal rates. Bulletin of the Psychonomic Society 22, 129–131.Google Scholar
  15. Haken, H. (1977): Synergetics. Berlin: Springer.CrossRefGoogle Scholar
  16. Haken, H. (1994): Some basic concepts of synergetics with respect to multistability in perception, phase transitions and formation of meaning. In this volume.Google Scholar
  17. Haken, H. & Stadler, M. (Eds.) (1990): Synergetics of Cognition. Berlin: Springer.Google Scholar
  18. Haken, H., Kelso, J.A.S. & Bunz, H. (1985): A theoretical model of phase transitions in human hand movements. Biological Cybernetics 51, 347 356.MathSciNetMATHCrossRefGoogle Scholar
  19. Heath, H.A. & Orbach, J. (1963): Reversibility of the Necker cube: IV. Responses of elderly people. Perceptual and Motor Skills 17, 625–626.CrossRefGoogle Scholar
  20. Kanizsa, G. (1979): Organization in Vision. New York: Praeger.Google Scholar
  21. Kelso, J.A.S., Case, P., Holroyd, T., Horvath, E., Raczaszek, J., Tuller, B. & Ding, M. (1994): Multistability and metastability in perceptual and brain dynamics. In this volume.Google Scholar
  22. Köhler, W. (1940): Dynamics in Psychology. New York: Liveright.Google Scholar
  23. Kruse, P. (1988): Stabilität, Instabilität, Mult ist abilität: Selbstorganisation und Selbstreferentialität in kognitiven Systemen. Delfin 6, 35–57.Google Scholar
  24. Kruse, P. & Gheorghiu, V.A. (1992): Self-organization theory and radical constructivism: A new concept for understanding hypnosis, suggestion, and suggestibility. In W. Bongartz (Ed.), Hypnosis: 175 Years after Mesmer. Recent Developments in Theory and Application, pp. 161–171. Konstanz: Universitätsverlag Konstanz.Google Scholar
  25. Kruse, P. & Stadler, M. (1990): Stability and instability in cognitive systems: multistability, suggestion, and psychosomatic interaction. In: H. Haken &; M. Stadler (Eds.), Synergetics of Cognition pp. 201–215, Berlin: Springer.Google Scholar
  26. Kruse, P. & Stadler, M. (1993): The significance of nonlinear phenomena for the investigation of cognitive systems. In: H. Haken & A.S. Mikhailov (Eds.), Non- linearity in Complex Systems, pp. 138–160. Berlin: Springer.Google Scholar
  27. Kruse, P., Carmesin, H.-O. & Stadler, M. (1993): Stabilisierung adaptiver Dynamik durch Bewertung: Schizophrenie als Korrespondenzproblem plastischer neuronaler Netzwerke? Paper presented at the 3rd Herbstakademie: Selbstorganisation in Psychologie und Psychiatrie, Sozialpsychatrische Universitätsklinik Bern.Google Scholar
  28. Kruse, P., Roth, G. & Stadler, M. (1987): Ordnungsbildung und psychophysische Feldtheorie. Gestalt Theory 9, 150–167.Google Scholar
  29. Kruse, P., Stadler, M. & Strüber, D. (1991): Psychological modification and syner- getic modelling of perceptual oscillations. In: H. Haken & H.P. Koepchen (Eds.), Rhythms in Physiological Systems, pp. 299–311. Berlin: Springer.CrossRefGoogle Scholar
  30. Kruse, P., Stadler, M. & Wehner, T. (1986): Direction and frequency specific processing in long-range apparent movement. Vision Research 26, 327–335.CrossRefGoogle Scholar
  31. Nebelytsyn, V.D. (1964): An investigation on the connection between sensitivity and strength of the nervous system. In: J.A. Gray (Ed.), Pavlov’s Typology, pp. 402–245. Oxford: Pergamon Press.Google Scholar
  32. Necker, L.A. (1832): Observations on some remarkable phenomenon which occurs on viewing a figure of a crystal or geometrical solid. The London and Edinburgh Philosophical Magazine and Journal of Science 3, 329–337.Google Scholar
  33. Pavlov, I.P. (1955): Selected Works. Moscow: Foreign Language Publishing House.Google Scholar
  34. Phillipson, O.T. & Harris, J.P. (1984): Effects of chlorpromazine and promazine on the perception of some multi-stable visual figures. The Quarterly Journal of Experimental Psychology 36A, 291–308.Google Scholar
  35. Schöner, G. & Hock, H. (1994): Concepts for a dynamic theory of perceptual organization: An example from apparant movement. In this volume.Google Scholar
  36. Schöner, G., Haken, H. & Kelso, J.A.S. (1986): A stochastic theory of phase transitions in human movement. Biological Cybernetics 53, 247–257.MATHCrossRefGoogle Scholar
  37. Sherif, M. (1935): A study of some social factors in perception. Archives of Psychology 187, 1–60.Google Scholar
  38. Stadler, M. & Kruse, P. (1990): The self-organization perspective in cognition research: historical remarks and new experimental approaches. In: H. Haken, & M. Stadler (Eds.), Synergetics of Cognition, pp. 32–52. Berlin: Springer.Google Scholar
  39. Stadler, M. & Kruse, P. (1994): The function of meaning in cognitive order formation. In this volume.Google Scholar
  40. Stukat, K.G. (1958): Suggestibility: A Factorial and Experimental Analysis. Stockholm: Almqvist and Wiksell.Google Scholar
  41. Szu, H.H., Lu, F. & Landa, J.S. (1994): Artificial neural networks and Haken syn- ergetic computer hybrid approach for solving bistable reversible figures. In this volume.Google Scholar
  42. Zimmer, A.C. (1994): Multistability, more than a freak phenomenon. In this volume.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • P. Kruse
    • 1
  • D. Strüber
    • 1
  • M. Stadler
    • 1
  1. 1.Institute of Psychology and Cognition Research and Center for Cognitive SciencesUniversity of BremenGermany

Personalised recommendations