Multistability in Molecules and Reactions

  • P. J. Plath
  • C. Stadler
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 64)


Regarding multistability in chemical systems, the level of individual molecules and the level of the kinetic/thermodynamic description have to be distinguished. The difference in the order of magnitude of these two chemical descriptions is about the Loschmidt number. Therefore multistability in the molecular system has to be discussed in terms of algebraic quantum mechanics, whereas multistability on the kinetic/thermodynamic level is fully described in terms of classical non-linear dynamic systems. Taking two well-known chemical examples — the mesomery of benzene and the catalytic oxidation of alcohols — we discuss multistability with respect to both of the descriptions.


Ethanol Oxidation Versus Versus Versus Versus Versus Benzene Molecule Orthomodular Lattice Quantum Mechanical System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amman, A.: Das Gestaltproblem in der Chemie: Die Entstehung molekularer Form unter dem Einfluß der Umgebung, Gestalt-Theory 14, 4 (1992), 228–65Google Scholar
  2. Dress, A., Jaeger, N.I., Plath, P.J.: Zur Dynamik idealer Speicher. Ein einfaches mathematisches Modell, Theoret. Chim. Acta (Berlin), 61 (1982), 437–60CrossRefGoogle Scholar
  3. Engel-Herbert, H., Plath, P.J., Ottensmeyer, R., Schnelle, T., Kaldasch, J.: Dynamics of the Heterogeneous Catalytic Oxidation of Ethanol-II. Qualitative Modelling of Dynamic Features, Chemical Engineering Science 45 (1990), 955–64CrossRefGoogle Scholar
  4. Haberditzel, A., Jaeger, N.I., Plath, P.J.: Langzeitverhalten der bistabilen Oxidation des Methanols an Pd-Trägerkatalysatoren, Z. Phys. Chemie, Leipzig, 265, 3 (1984), 449–63Google Scholar
  5. Hass, E.C., Plath, P.J.: Der A-Formalismus — Eine kontinuierliche Beschreibung chemischer Reaktionen auf der Grundlage diskreter Reaktionsmodelle, Z. Chemie 22, 1 (1982), 14–23Google Scholar
  6. Hass, E.C., Plath, P.J.: The Multi-Dimensional A-Model — A Graph Theoretical/Algebraic Approach to Describe Mechanistics Aspects of Complex Chemical Reactions, in: Chemical Applications of Topology and Graph Theory (ed.: King, R. B.), Studies in Physical and Theoretical Chemistry Vol. 28, Elsevier, Amsterdam, Oxford, New York, Tokyo (1983), p.p. 405–19Google Scholar
  7. Herzel, H., Plath, P.J., Svensson, P.: Experimental evidence of homoclinic chaos and type-II-intermittency during the oxidation of methanol, Physica D48 (1991), 340–352ADSGoogle Scholar
  8. Plath, P.J., Prüfer, H.: Ein stochastischer zellulärer Automat als Modell einer heterogen katalysierten Reaktion, Z. Phys. Chemie (Leipzig), 268, 2 (1987), 235–49Google Scholar
  9. Plath, P.J.: Diskrete Physik molekularer Umlagerungen, Teubner Texte zur Physik, Bd. 19, BSB B. G. Teubner Verlagsgesellschaft, Leipzig (1988)Google Scholar
  10. Plath, P.J., Hass, E.H., Kramer, M.: Graph Theory and the Mechanistic Description of Chemical Processes, in: Chemical Graph Theory, Reactivity and Kinetics (ed.: Bencher, D., Rouvrey, D.H.), Abacus Press/Gordon & Breach Science Publishers, Philadelphia, Reading, Paris, Montreux, Tokyo, Melbourne (1992), p.p. 99–153Google Scholar
  11. Plath, P.J., Hass, E.H.: Logic of Chemical Ideas, in: Chemical Applications of Topology and Graph Theory (ed.: King, R.B.), Studies in Physical and Theoretical Chemistry Vol.28, Elsevier, Aniterdam, Oxford, New York, Tokyo (1983), p.p. 392–404Google Scholar
  12. Primas, H.: Chemistry, Quantum Mechanics and Reductionism, Lecture Notes in Chemistry Vol. 24, Springer-Verlag Berlin, Heidelberg, New York (1981)Google Scholar
  13. Renyi, A.: Tagebuch über Informationstheorie, VEB Deutscher Verlag der Wissenschaften, Berlin (1982), p. 29MATHGoogle Scholar
  14. Schuster, H.: Mathematische Modellbildung der Dynamik der heterogen katalysierten Oxidation des Methanols. Numerische Behandlung eines diskreten mathematischen Modells von über Diffusion miteinander gekoppelten chemischen Speichern, Dissertation, Universität Bremen (1987)Google Scholar
  15. Simmons, G.F.: Introduction to Topology and Modern Analysis, Mc Graw-Hill Book Company, New York. San Francisco, Toronto, London (1963), p.p. 217–42MATHGoogle Scholar
  16. Ugi, I., Marquarding, D., Klusacek, H., Gokel, G., Gillespie, P.: Chemie und logische Strukturen, Angewandte Chemie 82, 18 (1970), 741–71CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • P. J. Plath
    • 1
  • C. Stadler
    • 2
  1. 1.Institute of Applied and Physical ChemistryUniversity of BremenGermany
  2. 2.Institute of Organic ChemistryUniversity of BremenGermany

Personalised recommendations