Concepts for a Dynamic Theory of Perceptual Organization: An Example from Apparent Movement

  • G. Schöner
  • H. Hock
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 64)

Abstract

To address the problem of cooperativity in coherent motion perception we investigate the hypothesis that perceptual organization is governed by dynamic laws that reside at the level of macroscopic perceptual variables. Theoretical concepts are provided to deal both with intrinsic tendencies of perceptual organization and the specificational power of the stimulus. The theory aims at (a) identifying lawful aspects of perception in relation to how percepts persist and how perceptual change comes about, and (b) providing operational language elements with which perceptual theories can be constructed in such a way as to enable direct experimental test of propositions about perceptual organization. A central idea is that temporal stability is an essential and non-redundant property of organized percepts. The validity of the conceptual framework can be evaluated by testing specific predictions for multistable percepts that include the occurrence of hysteresis and its dependence on rate of stimulus change, the loss of stability near points of perceptual change and characteristic switching time distributions for spontaneous reversals. We provide an exemplary model of the perceptual organization of apparent motion both to demonstrate how propositions about perceptual organization can be formed and evaluated and to critically test the theoretical framework through comparison of the theoretical predictions with recent experiments on the dynamic properties of multistable percepts. More generally, we discuss the conceptual consequences of the dynamic theory for the issues of categorization, invariance, and top-down processes in perception.

Keywords

Retina Assure Assimilation Lime Resi 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anstis, S. (1986): Motion perception in the frontal plane. In: K. R. Boff, L. Kaufman & J.P. Thomas (Eds.), Handbook of Perception and Human Performance, pp. 16 – 1 to 16 – 27. New York: Wiley.Google Scholar
  2. Attneave, F. (1971): Multistability in perception. Scientific American 225, 62 – 71.CrossRefGoogle Scholar
  3. Brown, K.T. (1955): Rate of apparent change in a dynamic ambiguous figure as a function of observation time. American Journal of Psychology 68, 358 – 371.CrossRefGoogle Scholar
  4. Burt, P. & Sperling, G. (1981): Time, distance, and feature trade-offs in visual apparent motion. Psychological Review 88, 171 – 195.CrossRefGoogle Scholar
  5. Collet, P. & Eckmann, J.P. (1990): Instabilities and Fronts in Extended Systems. Princeton, NJ: Princeton University Press.Google Scholar
  6. Dawson, M.R.W. (1991): The how and why of what went where in apparent motion: modeling solutions to the motion correspondence problem. Psychological Review 98, 569 – 603.CrossRefGoogle Scholar
  7. DeMarco, A., Pennengo, P., Trabucco, A., Borsellino, A., Carlini, F., Riani, M. & Tuccio, M.T. (1977): Stochastic models and fluctuations in reversal time of ambiguous figures. Perception 6, 645 – 656.CrossRefGoogle Scholar
  8. Ditzinger, T. & Haken, H. (1989): Oscillations in the perception of ambiguous patterns. Biological Cybernetics 61, 279 – 287.MathSciNetCrossRefGoogle Scholar
  9. Ditzinger, T. & Haken, HL (1990): The impact of fluctuations on the recognition of ambiguous patterns. Biological Cybernetics 63, 453 – 456.CrossRefGoogle Scholar
  10. Dodwell, P.L. (1978): Human pattern and object perception. In: R. Held, H.W. Leibowitz & H.-L. Teuber (Eds.), Handbook of Sensory Physiology, vol. 8, Perception, pp. 523 – 548. Berlin: Springer.Google Scholar
  11. Finlay, D. & Caelli, T. (1979): Frequency, phase, and colour coding in apparent motion. Perception 8, 595 – 602.CrossRefGoogle Scholar
  12. Fisher, G.H. (1967): Measuring ambiguity. American Journal of Psychology 80, 541 – 557.CrossRefGoogle Scholar
  13. Gardiner, C.W. (1983): Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences. Berlin: Springer.MATHGoogle Scholar
  14. Gibson, J.J. (1966): The Senses Considered as a Perceptual Systems. Boston: Houghton Mifflin.Google Scholar
  15. Guckenheimer, J. & Holmes, P. (1983): Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector fields. New York: Springer.Google Scholar
  16. Haken, H. (1983): Synergetics-An Introduction. Berlin: Springer (3rd ed.).MATHGoogle Scholar
  17. Hock, H.S., Kelso, J.A.S. & Schöner, G. (1993): Bistability and hysteresis in the organization of apparent motion patterns. Journal of Experimental Psychology: Human Perception and Performance 19, 63 – 80.CrossRefGoogle Scholar
  18. Hock, H.S. & Voss, A. (1990): Spontaneous pattern changes for bistable stimuli: Evidence against neural satiatjon. Paper presented at the 31st Meeting of the Psychonomic Society, New Orflans, LA.Google Scholar
  19. Hoeth, F. (1966): Gesetzlichkeit bei stroboskopischen Alternativbewegungen. Frankfurt/Main: Kramer.Google Scholar
  20. Horsthemke, W. & Lefever, R. (1984): Noise-induced Transitions. Berlin: Springer.MATHGoogle Scholar
  21. Kawamoto, A.H. & Anderson, J.A. (1985): A neural network model of multistable perception. Acta Psychologia 59, 35 – 65.CrossRefGoogle Scholar
  22. Koffka, K. (1935): Principles of Gestalt Psychology. New York: Harcourt, Brace & World Inc.Google Scholar
  23. Köhler, W. & Wallach, H. (1944): Figural after-effects: an investigation of visual processes. Proceedings of the American Philosophical Society 88, 269 – 357.Google Scholar
  24. Kolers, P.A. (1964): Apparent movement of a Necker cube. American Journal of Psychology 77, 220 – 230.CrossRefGoogle Scholar
  25. Korte, A. (1915): Kinematoskopische Untersuchungen. Zeitschrift für Psychologie 72, 194 – 296.Google Scholar
  26. Kruse, P., Stadler, M. & Strüber, D. (1991): Psychological modification and syner- getic modelling of perceptual oscillations. In: H. Haken & H.P. Koepchen (Eds.), Rhythms in Physiological Systems, pp. 299 – 311. Berlin: Springer.CrossRefGoogle Scholar
  27. Kruse, P., Stadler, M. & Wehner, T. (1986): Direction and frequency specific processing in the perception of long-range apparent movement. Vision Research 26, 327 – 335.CrossRefGoogle Scholar
  28. Kubovy, M. & Pomerantz, J.R. (Eds.) (1981): Perceptual Organization. Hillsdale, NJ: Erlbaum.Google Scholar
  29. Lindauer, M.S. & Baust, R.F. (1974): Comparison between 25 reversible and ambiguous figures on measures of latency, duration and fluctuation. Behavior Research Methods and Instrumentation 6, 1 – 9.CrossRefGoogle Scholar
  30. Lugiato, L.A., Broggi, G., Merri, M. & Pernigo, M.A. (1989): Control of noise by noise and applications to optical systems. In: F. Moss & P.V.E. McClintock (Eds.), Noise in Nonlinear Dynamical Systems, vol. 2. Cambridge: Cambridge University Press.Google Scholar
  31. Marr, D. (1982): Vision. New York: Freeman & Co.Google Scholar
  32. Metzger, W. (1941/1975): Psychologie. Dresden/Darmstadt: Steinkopff (5th ed.).Google Scholar
  33. Metzger, W. (1975): Gesetze des Sehens. Frankfurt/Main: Kramer (3rd ed.).Google Scholar
  34. Nawrot, M. & Sekuler, R. (1990): Assimilation and contrast in motion perception: Explorations in cooperativity. Vision Research 30, 1439.CrossRefGoogle Scholar
  35. Neuhaus, W. (1930): Experimentelle Untersuchungen der Scheinbewegung. Archiv für die gesamte Psychologie 75, 315 – 458.Google Scholar
  36. Perkell, J.B. & Klatt, D.H. (Eds.) (1986): Invariance and Variability in Speech Processes. Hillsdale, NJ: Erlbaum.Google Scholar
  37. Pomerantz, J.R. & Kubovy, M. (1986): Theoretical approaches to perceptual organization. In: K.R. Boff, L. Kaufman & J.P. Thomas (Eds.), Handbook of Perception and Human Performance, pp. 36 – 1 to 36 – 46. New York: Wiley- Interscience.Google Scholar
  38. Poston, T. & Stewart, I. (1978): Nonlinear modelling of multistable perception. Behavioral Science 23, 318 – 334.MathSciNetCrossRefGoogle Scholar
  39. Ramachandran, V.W. & Anstis, S.M. (1987): Visual inertia in apparent motion. Vision Research 27, 755 – 764.CrossRefGoogle Scholar
  40. Repp, B.H. (1984): Categorical perception: Issues, methods, findings. In: N. J. Lass (Ed.), Speech and Language: Advances in Theory and Practice, vol. 10, pp. 243 – 335. Ney York: Academic Press.Google Scholar
  41. Rock, I. (1986): The description and analysis of object and event perception. In: K.R. Boff, L. Kaufman & J.P. Thomas (Eds.), pp. 33 – 1 to 33 – 71. New York: Wiley-Interscience.Google Scholar
  42. Schöner, G. (1989): Learning and relall in a dynamic theory of coordination patterns. Biological Cybernetics 62, 39 – 54.CrossRefGoogle Scholar
  43. Schöner, G., Haken, H. & Kelso, J.A.S. (1986): A stochastic theory of phase transitions in human hand movement. Biological Cybernetics 53, 247 – 257.MATHCrossRefGoogle Scholar
  44. Schöner, G., Jiang, W.J. & Kelso, J.A.S. (1990): A synergetic theory of quadrupedal gaits and gait transitions. Journal of Theoretical Biology 142, 359 – 391.CrossRefGoogle Scholar
  45. Schöner, G. & Kelso, J.A.S. (1988a): Dynamic pattern generation in behavioral and neural systems. Science 239, 1513 – 1520.ADSCrossRefGoogle Scholar
  46. Schöner, G. & Kelso, J.A.S. (1988b): A dynamic theory of behavioral change. Journal of Theoretical Biology 135, 501 – 524.MathSciNetCrossRefGoogle Scholar
  47. Schöner, G., Zanone, P.G. & Kelso, J.A.S. (1992): Learning as change of coordination dynamics: Theory and experiment. Journal of Motor Behavior 24, 29 – 48.CrossRefGoogle Scholar
  48. Ullman, S. (1979): The Interpretation of Visual Motion. Cambridge: MIT-Press.Google Scholar
  49. von Schiller, P. (1933): Stroboskopische Alternativ versuche. Psychologische Forschung 17, 179 – 214.CrossRefGoogle Scholar
  50. Wilhams, D., Phillips, G. & Sekuler, R. (1986): Hysteresis in the perception of motion direction as evidence for neural cooperativity. Nature 324, 253 – 255.ADSCrossRefGoogle Scholar
  51. Yuille, A. & Grzywacz, N.M. (1988): A computational theory for the perception of coherent visual motion. Nature 333, 71 – 74.ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • G. Schöner
    • 1
  • H. Hock
    • 2
  1. 1.Institute for NeuroinformaticsRuhr-University of BochumBochumGermany
  2. 2.Department of PsychologyFlorida Atlantic UniversityBoca RatonUSA

Personalised recommendations