Skip to main content

Klassische und „Non-Surfactantfunktionen“ des pulmonalen Surfactantsystems

  • Conference paper
  • 26 Accesses

Zusammenfassung

Die Lunge eines erwachsenen Menschen ist mit der Außenwelt über eine Fläche von ungefähr 140 m2 verbunden. Diese enorme Fläche ist erforderlich, um den Gasaustausch zu realisieren, sie stellt an den Organismus aber auch Anforderungen ganz besonderer Art. Zwei wesentliche Anforderungen in diesem Zusammenhang sind, daß die Gasaustauschfläche während der Atemzyklen biophysikalisch verfügbar gehalten und gleichzeitig gegen eine Vielzahl infektiöser, allergener und toxischer Agentien geschützt werden muß. Derartige Agentien kontaminieren in unterschiedlichem Ausmaß die ca. 10 m3 (15 kg) Luft, die ein Erwachsener pro Tag einatmet. Sie können aber auch im Blut präsent sein, dessen gesamtes Volumen (ca. 85 ml/kg/min) vom Herz durch die Lunge gepumpt wird. Über beide Wege kann die Gasaustauschfläche der Lunge so geschädigt werden, daß es zu einer respiratorischen Insuffizienz kommt. Dies wird in der Regel erst dann möglich, wenn lokale Abwehrmechanismen des Organismus ausfallen oder gestört sind.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Ansfield MJ, Benson BJ (1980) Identification of the immunosuppressive components of canine pulmonary surface active material. J Immunol 125: 1093–1098

    PubMed  CAS  Google Scholar 

  2. Ansfield MJ, Kaltreider HB, Benson BJ, Caldwell JL (1979) Immunosuppressive activity of canine pulmonary surface active material. J Immunol 122: 1062–1066

    PubMed  CAS  Google Scholar 

  3. Ansfield MJ, Kaltreider HB, Benson BJ, Shalaby MR (1980) Canine surface active material and pulmonary lymphocyte function studies with mixed-lymphocyte culture. Exp Lung Res 1: 3–10

    Article  PubMed  CAS  Google Scholar 

  4. Avery ME, Mead J (1959) Surface properties in relation to atelectasis and hyaline membrane disease. Am J Dis Child 97: 517–523

    CAS  Google Scholar 

  5. Ballard PL, Liley HG, Gonzales LW et al. (1990) Interferon-gamma and synthesis of surfactant components by cultured human fetal lung. Am J Respir Cell Mol Biol 2: 137–143

    PubMed  CAS  Google Scholar 

  6. Batenburg JJ (1992) Surfactant phospholipids: synthesis and storage. Am J Physiol 262: L367–L 385

    PubMed  CAS  Google Scholar 

  7. Baughman RP, Stein E, MacGee J, Rashkin M, Sahebjami H (1984) Changes in fatty acids in phsopholipids of the bronchoalveolar fluid in bacterial pneumonia and in adult respiratory distress syndrome. Clin Chem 30: 521–523

    PubMed  CAS  Google Scholar 

  8. Baughman RP, Sternberg RI, Hull W, Buchsbaum JA, Whitsett J (1993) Decreased surfactant protein A in patients with bacterial pneumonia. Am Rev Respir Dis 147: 653–657

    PubMed  CAS  Google Scholar 

  9. Buckingham S (1961) Studies on the identification of an antiatelectasis factor in normal sheep lung. Am J Dis Child 102: 521–522

    Google Scholar 

  10. Childs RA, Wright JR, Ross GF et al. (1992) Specificity of lung surfactant protein SP-A for both the carbohydrate and the lipid moieties of certain neutral glycolipids. J Biol Chem 267: 9972–9979

    PubMed  CAS  Google Scholar 

  11. Clements JA (1957) Surface tension of lung extracts. Proc Soc Exp Biol Med 95: 170–172

    PubMed  CAS  Google Scholar 

  12. Clements JA, Hustead RF, Johnson RP, Gribetz I (1961) Pulmonary surface tension and alveolar stability. J Appl Physiol 16: 444–450

    PubMed  CAS  Google Scholar 

  13. Coonrod JD, Jarrells MC, Yoneda K (1986) Effect of rat surfactant lipids on complement and Fc receptors of macrophages. Infect Immun 54: 371–378

    PubMed  CAS  Google Scholar 

  14. Coonrod JD, Yoneda K (1983) Effect of rat alveolar lining material on macrophage receptors. J Immunol 130: 2589–2596

    PubMed  CAS  Google Scholar 

  15. Crapo JD, Young SL, Fram EK, Pinkerton KE, Barry BE, Crapo RO (1983) Morphometric characteristics of cells in the alveolar region of mammalian lungs. Am Rev Respir Dis 128: S 42–S 46

    PubMed  CAS  Google Scholar 

  16. Desai R, Tetley TD, Curtis CG, Powell GM, Richards RJ (1978) Studies on the fate of pulmonary surfactant in the lung. Biochem J 176: 455–462

    PubMed  CAS  Google Scholar 

  17. Dobbs LG (1990) Isolation and culture of alveolar type II cells. Am J Physiol 258: L 134– L 147

    PubMed  CAS  Google Scholar 

  18. Engen RL, Brown T Jr. (1991) Changes in phospholipids of alveolar lining material in calves after aerosol exposure to bovine herpesvirus-1 or parainfluenza-3 virus. Am J Vet Res 52: 675–677

    PubMed  CAS  Google Scholar 

  19. Escamilla R, Prevost MC, Hermant C, Caratero A, Cariven C, Krempf M (1992) Surfactant analysis during pneumocystis carinii pneumonia in HIV-infected patients. Chest 101: 1558–1562

    Google Scholar 

  20. Fujiwara T, Maeta H, Chida S, Morita T, Watabe Y, Abe T (1980) Artificial surfactant therapy in hyaline membrane disease. Lancet I: 55–59

    Article  Google Scholar 

  21. Gehr P, Schürch S (1992) Surface forces displace particles deposited in airways toward the epithelium. News Physiol Sci 7: 1–5

    Google Scholar 

  22. Goerke J, Clements JA (1986) Alveolar surface tension and lung surfactant. In: Macklem PT, Mead J (eds) Handbook of physiology — The respiratory system. American Physiological Society, Washington DC, pp 247–261

    Google Scholar 

  23. Goerke J, Schürch S (1991) Mechanical properties of the alveolar surface. In: Crystal RG, West JB (eds) The lung, scientific foundation. Raven Press, New York, pp 821–827

    Google Scholar 

  24. Gregory TJ, Longmore WJ, Moxley MA et al. (1991) Surfactant chemical composition and biophysical activity in acute respiratory distress syndrome. J Clin Invest 88: 1976–1981

    Article  PubMed  CAS  Google Scholar 

  25. Haagsman HP, Hawgood S, Sargeant T, Buckley D, White RT, Drickamer K, Benson BJ (1987) The major lung surfactant protein, SP 28–36, is a calcium-dependent, carbohydrate-binding protein. J Biol Chem 262: 13877–13880

    PubMed  CAS  Google Scholar 

  26. Hawgood S, Benson BJ, Schilling J, Damm D, Clements JA, White RT (1987) Nucleotide and amino acid sequences of pulmonary surfactant protein SP 18 and evidence for cooperation between SP 18 and SP 28–36 in surfactant lipid adsorption. Proc Natl Acad Sci USA 84: 66–70

    Article  PubMed  CAS  Google Scholar 

  27. Hawgood S, Shiffer K (1991) Structures and properties of the surfactant-associated proteins. Annu Rev Physiol 53: 375–394

    Article  PubMed  CAS  Google Scholar 

  28. Hayakawa H, Giridhar G, Myrvik ON, Kucera L (1992) Pulmonary surfactant phospholipids modulate priming of rabbit alveolar macrophages for oxidative responses. J Leukoc Biol 51: 379–385

    PubMed  CAS  Google Scholar 

  29. Hayakawa H, Myrvik QN, St. Clair RW (1989) Pulmonary surfactant inhibits priming of rabbit alveolar macrophage. Evidence that surfactant suppresses the oxidative burst of alveolar macrophages in infant rabbits. Am Rev Respir Dis 140: 1390–1397

    Article  PubMed  CAS  Google Scholar 

  30. Hoffman RM. Claypool WD, Katyal SL, Singh G, Rogers RM, Dauber JH (1987) Augmentation of rat alveolar macrophage migration by surfactant protein. Am Rev Respir Dis 135: 1358–1362

    PubMed  CAS  Google Scholar 

  31. Jonsson S, Musher DM, Goree A, Lawrence EC (1986) Human alveolar lining material and antibacterial defenses. Am Rev Respir Dis 133: 136–140

    PubMed  CAS  Google Scholar 

  32. Juers JA, Rogers RM, McCurdy JB, Cook WW (1976) Enhancement of bactericidal capacity of alveolar macrophages by human alveolar Tinging material. J Clin Invest 58: 271–275

    Article  PubMed  CAS  Google Scholar 

  33. Jurmann MJ, Obladen M, Schaefers HJ, Dammenhayn L, Haverich A (1989) Analysis of bronchoalveolar lavage and pulmonary alveolar surfactant for diagnosis of rejection and infection in heart-lung transplantation. Transplant Proc 21: 2581–2582

    PubMed  CAS  Google Scholar 

  34. Kakuta Y, Sasaki H, Takishima T (1991) Effect of artificial surfactant on ciliary beat frequency in guinea pig trachea. Respir Physiol 83: 313–322

    Article  PubMed  CAS  Google Scholar 

  35. Kamm RD, Schroter RC (1989) Is airway closure caused by a liquid film instability? Respir Physiol 75: 141–156

    Article  PubMed  CAS  Google Scholar 

  36. King RJ, Coalson JJ, Seidenfeld JJ, Anzueto AR, Smith DB, Peters JI (1989) O,- and pneumonia-induced lung injury. II. Properties of pulmonary surfactant. J Appl Physiol 67: 357–365

    PubMed  CAS  Google Scholar 

  37. Klaus MH, Clements JA, Havel RJ (1961) Composition of surface active material isolated from beef lung. Proc Natl Acad Sci USA 47: 1858–1859

    Article  PubMed  CAS  Google Scholar 

  38. Kuan S-F, Rust K, Crouch E (1992) Interactions of surfactant protein D with bacterial lipopolysaccharides. J Clin Invest 90: 97–106

    Article  PubMed  CAS  Google Scholar 

  39. Kuroki Y, Shiratori M, Ogasawara Y, Tsuzuki A, Akino T (1991) Characterization of pulmonary surfactant protein D: its copurification with lipids. Biochim Biophys Acta 1086: 185–190

    PubMed  CAS  Google Scholar 

  40. LaForce FM, Kelly WJ, Huber GL (1973) Inactivation of staphylococci by alveolar macrophages with preliminary observations on the importance of alveolar lining material. Am Rev Respir Dis 108: 784–790

    PubMed  CAS  Google Scholar 

  41. Magoon MW, Wright JR, Baritussio A et al. (1983) Subfractionation of lung surfactant. Implications for metabolism and surface activity. Biochim Biophys Acta 750: 18–31

    PubMed  CAS  Google Scholar 

  42. Malhotra R, Haurum J, Thiel S, Sim RB (1992) Interaction of Clq receptor with lung surfactant protein A. Eur J Immunol 22: 1437–1445

    Article  PubMed  CAS  Google Scholar 

  43. Manz-Keinke Plattner HH, Schlepper-Schäfer J (1992) Lung surfactant protein A ( SP-A) enhances serum-independent phagocytosis of bacteria by alveolar macrophages. Eur J Cell Biol 57: 95–100

    PubMed  CAS  Google Scholar 

  44. McNeely TB, Coonrod JD (1993) Comparison of the opsonic activity of human surfactant protein A for Staphylococcus aureus and Streptococcus pneumoniae with rabbit and human macrophages. J Infect Dis 167: 91–97

    Article  PubMed  CAS  Google Scholar 

  45. Murata Y, Kuroki Y, Akino T (1993) Role of the C-terminal domain of pulmonary surfactant protein A. Biochem J 291: 71–76

    PubMed  CAS  Google Scholar 

  46. Neergard Kv (1929) Neue Auffassung über einen Grundbegriff der Atemmechanik. Die Retraktionskraft der Lunge, abhängig von der Oberflächenspannung in den Alveolen. Z Ges Exp Med 66: 373–394

    Article  Google Scholar 

  47. Neuendank A, Weißbach S, Pettersson M, Schaberg T, Pison U (1992) Surfactant protein A (SP-A) enhances the production of reactive oxygen species in alveolar macrophages. Am Rev Respir Dis 145: A 876

    Google Scholar 

  48. Pattie RE (1955) Properties, function and origin of the alveolar lining layer. Nature 175: 1125–1126

    Article  Google Scholar 

  49. Pattle RE (1965) Surface lining of lung alveoli. Physiol Rev 45: 48–79

    PubMed  CAS  Google Scholar 

  50. Pattle RE, Thomas LC (1961) Lipoprotein composition of the film lining the lung. Nature 189: 844

    Article  PubMed  CAS  Google Scholar 

  51. Persson A, Chang D, Crouch E (1990) Surfactant protein D ( SP-D) is a divalent cation-dependent carbohydrate binding protein. J Biol Chem 265: 5755–5760

    PubMed  CAS  Google Scholar 

  52. Persson A, Chang D, Rust K, Moxley M, Longmore W, Crouch E (1989) Purification and biochemical characterization of CP4 ( SP-D), a collagenous surfactant-associated protein. Biochemistry 28: 6361–6367

    Article  PubMed  CAS  Google Scholar 

  53. Phelps DS, Rose RM (1991) Increased recovery of surfactant protein A in AIDS-related pneumonia. Am Rev Respir Dis

    Google Scholar 

  54. Pison U, Obertacke U, Brand M, Seeger W, Joka T, Bruch J, Schmit NK (1990) Altered pulmonary surfactant in uncomplicated and septicemia-complicated courses of acute respiratory failure. J Trauma 30: 19–26

    Article  PubMed  CAS  Google Scholar 

  55. Pison U, Seeger W, Buchhorn R et al. (1989) Surfactant abnormalities in patients with respiratory failure after multiple trauma. Am Rev Respir Dis 140: 1033–1039

    PubMed  CAS  Google Scholar 

  56. Pison U, Shiffer K, Hawgood S, Goerke J (1990) Effects of the surfactant-associated proteins, SP-A, SP-B and SP-C, on phospholipid surface film formation. Prog Respirat Res 25: 271–273

    Google Scholar 

  57. Pison U, Wright JR, Hawgood S (1992) Specific binding of surfactant apoprotein SP-A to rat alveolar macrophages. Am J Physiol 262: L 412–L 417

    PubMed  CAS  Google Scholar 

  58. Pollack JD, Weiss HS, Somerson NL (1979) Lecithin changes in murine Mycoplasma pulmonis respiratory infection. Infect Immun 24: 94–101

    PubMed  CAS  Google Scholar 

  59. Possmayer F (1988) A proposed nomenclature for pulmonary surfactant-associated proteins. Am Rev Respir Dis 138: 990–998

    Article  PubMed  CAS  Google Scholar 

  60. Radford EP (1954) Method for estimating respiratory surface area of mammalian lungs from their physical characteristics. Proc Soc Exp Biol Med 87: 58–61

    PubMed  Google Scholar 

  61. Rensch H, von Seefeld H (1984) Surfactant-mucus interacrion. In: Robertson B, van Golde LMG, Batenburg JJ (eds) Pulmonary surfactant. Elsevier, Amsterdam, pp 204–214

    Google Scholar 

  62. Richman PS, Batcher S, Catanzaro A (1990) Pulmonary surfactant suppresses the immune lung injury response to inhaled antigen in guinea pigs. J Lab Clin Med 116: 1826

    Google Scholar 

  63. Sachse K (1989) Changes in the relative concentrations of surfactant phospholipids in young pigs with experimental pneumonia. Zentralbl Veterinarmed B 36: 385–390

    PubMed  CAS  Google Scholar 

  64. Schürch S, Goerke J, Clements JA (1976) Direct determination of surface tension in the lung. Proc Natl Acad Sci USA 73: 4698–4702

    Article  PubMed  Google Scholar 

  65. Schürch S, Lee M, Gehr P (1992) Pulmonary surfactant: surface properties and function of alveolar and airway surfactant. Pure & Appl Chem 64: 1745–1750

    Article  Google Scholar 

  66. Sheehan PM, Stokes DC, Yeh YY, Hughes WT (1986) Surfactant phospholipids and lavage phospholipase A2 in experimental Pneumocystis carinii pneumonia. Am Rev Respir Dis 134: 526–531

    PubMed  CAS  Google Scholar 

  67. Sherman MP, D’Ambola JB, Aeberhard EE, Barrett CT (1988) Surfactant therapy of newborn rabbits impairs lung macrophage bactericidal activity. J Appl Phys 65: 137–145

    CAS  Google Scholar 

  68. Sitrin RG, Ansfield MJ, Kaltreider HB (1985) The effect of pulmonary surface-active material on the generation and expression of murine B- and T-lymphocyte effector functions in vitro. Exp Lung Res 9: 85–97

    Article  PubMed  CAS  Google Scholar 

  69. Speer CP, Götze B, Curstedt T, Robertson B (1991) Phagocytic functions and tumor necrosis factor secretion of human monocytes exposed to natural porcine surfactant ( Curosurf ). Pediatr Res 30: 69–74

    PubMed  CAS  Google Scholar 

  70. Stern N, Riklis S, Kalina M, Tietz A (1986) The catabolism of lung surfactant by alveolar macrophages. Biochim Biophys Acta 877: 323–333

    PubMed  CAS  Google Scholar 

  71. Tenner AJ, Robinson SL, Borchelt J, Wright JR (1989) Human pulmonary surfactant protein (SP-A), a protein structurally homologous to Clq, can enhance FcR- and CR1mediated phagocytosis. J Biol Chem 264: 13923–13928

    PubMed  CAS  Google Scholar 

  72. Thomassen MJ, Meeker DP, Antal JM, Connors MJ, Wiedemann HP (1992) Synthetic surfactant ( Exosurf) inhibits endotoxin-stimulated cytokine secretion by human alveolar macrophages. Am J Respir Cell Mol Biol 7: 257–260

    PubMed  CAS  Google Scholar 

  73. van Iwaarden F, Welmers B, Verhoef J, Haagsman HP, van Golde LMG (1990) Pulmonary surfactant protein A enhances the host-defense mechanism of rat alveolar macrophages. Am J Respir Cell Mol Biol 2: 91–98

    PubMed  Google Scholar 

  74. van Iwaarden JF, Shimizu H, van Golde PH, Voelker DR, van Golde LMG (1992) Rat surfactant protein D enhances the production of oxygen radicals by rat alveolar macrophages. Biochem J 286: 5–8

    PubMed  Google Scholar 

  75. van Iwaarden JF, van Strijp JA, Visser H, Haagsman HP, Verhoef J, van Golde LM (1992) Binding of surfactant protein A (SP-A) to herpes simplex virus type 1-infected cells is mediated by the carbohydrate moiety of SP-A. J Biol Chem 267: 25039–25043

    PubMed  Google Scholar 

  76. van Iwaarden JF, van Strijp JAG, Ebskamp MJM, Welmers AC, Verhoef J, van Golde LMG (1991) Surfactant protein A is opsonin in phagocytosis of herpes simplex virus type 1 by rat alveolar macrophages. Am J Physiol 261: L204 — L209

    PubMed  Google Scholar 

  77. Voss T, Eistetter H, Schäfer KP, Engel J (1988) Macromolecular organization of natural and recombinant lung surfactant protein SP 28–36. Structural homology with the complement factor Clq. J Mol Biol 201: 219–227

    Article  PubMed  CAS  Google Scholar 

  78. Voss T, Melchers K, Scheirle G, Schäfer KP (1991) Structural comparison of recombinant pulmonary surfactant protein SP-A derived from two human coding sequences: implications for the chain composition of natural human SP-A. Am J Respir Cell Mol Biol 4: 88–94

    PubMed  CAS  Google Scholar 

  79. Webb DSA, Jeska EL (1986) Enhanced luminol-dependent chemiluminescence of stimulated rat alveolar macrophages by pretreatment with alveolar lining material. J Leukocyte Biol 40: 55–64

    PubMed  CAS  Google Scholar 

  80. Weber H, Heilmann P, Meyer B, Maier KL (1990) Effect of canine surfactant protein ( SPA) on the respiratory burst of phagocytic cells. FEBS Lett 270: 90–94

    Article  PubMed  CAS  Google Scholar 

  81. Weißbach S, Neuendank A, Pettersson M, Schaberg T, Pison U (1992) Surfactant protein A (SP-A) stimulates phagocytosis of candida trop. by alveolar macrophages. FASEB J 6: A 1270

    Google Scholar 

  82. Weißbach S, Neuendank A, Pettersson M, Schaberg T, Pison U (1992) Surfactant protein A (SP-A) stimulates phagocytosis of candida trop. by alveolar macrophages. FASEB J 6: A 1270

    Google Scholar 

  83. Williams MC (1977) Conversion of lamellar body membranes into tubular myelin in alveoli of fetal rat lungs. J Cell Biol 72: 260–277

    Article  PubMed  CAS  Google Scholar 

  84. Wirtz H, Schmidt M (1992) Ventilation and secretion of pulmonary surfactant. Clin Investig 70: 3–13

    Article  PubMed  CAS  Google Scholar 

  85. Wispe JR, Clark JC, Warner BB, Fajardo D, Hull WE, Holtzman RB, Whitsett JA (1990) Tumor necrosis factor-alpha inhibits expression of pulmonary surfactant protein. J Clin Invest 86: 1954–1960

    Article  PubMed  CAS  Google Scholar 

  86. Wright AE, Douglas SR (1903) An experimental investigation of the role of the body fluids in connection with phagocytosis. Proc R Soc Lond 72: 357–370

    Article  Google Scholar 

  87. Wright JR, Clements JA (1987) Metabolism and turnover of lung surfactant. Am Rev Respir Dis 135: 426–444

    Article  Google Scholar 

  88. Wright JR, Dobbs LG (1991) Regulation of pulmonary surfactant secretion and clearance. Annu Rev Physiol 53: 395–414

    Article  PubMed  CAS  Google Scholar 

  89. Wright JR, Youmans DC (1993) Pulmonary surfactant protein A stimulates chemotaxis of alveolar macrophages. Am J Physiol 264: L 338–L 344

    PubMed  CAS  Google Scholar 

  90. Young SL, Kremers SA, Apple JS, Crapo JD, Brumley GW (1981) Rat lung surfactant kinetics: biochemical and morphometric correlation. J Appl Physiol: Respirat Environ Exercise Physiol 51: 248–253

    CAS  Google Scholar 

  91. Zimmerman PE, Voelker DR, McCormack FX, Paulsrud JR, Martin W 2 (1992) 120-kD surface glycoprotein of pneumocystis carinii is a ligand for surfactant protein A. J Clin Invest 89: 143–149

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pison, U., Neuendank, A., Weißbach, S., Max, M., Pietschmann, S. (1995). Klassische und „Non-Surfactantfunktionen“ des pulmonalen Surfactantsystems. In: Rügheimer, E. (eds) Respiratorische Therapie nach operativen Eingriffen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78399-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78399-9_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57047-9

  • Online ISBN: 978-3-642-78399-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics