Skip to main content

Zelluläre und mitochondriale Adaptationsvorgänge bei Hypoxie

  • Conference paper
Book cover Respiratorische Therapie nach operativen Eingriffen
  • 30 Accesses

Zusammenfassung

Verglichen mit den Adaptationsvorgängen an Hypoxie, die auf biochemischem und molekularem Gebiet in der Humanphysiologie und klinischen Bioenergetik bekannt sind, weisen die Anpassungen an O2-Mangel im gesamten Tierreich eine erstaunliche Komplexität und Flexibilität metabolischer Stoffwechselprozesse auf (Gnaiger 1993a). Ökologisch ist die Hypoxie besonders in aquatischen Lebensräumen ausgeprägt, was auf die 30- bis 50fach geringere Sättigungskonzentration von Sauerstoff in Wasser im Vergleich mit Luft zurückzuführen ist. Doch auch die Zellen des menschlichen Organismus befinden sich in einem wässrigen Mikromilieu, in dem bei Drosselung der O2-Zufuhr ein schnelles Abfallen des intrazellulären pO2 die Folge ist.

Unterstützung durch den Fonds zur Förderung der wissenschaftlichen Forschung, P7162-BIO, und ein Projekt des BMWF, Österreich. Ich bedanke mich bei Herrn Univ.-Prof. Dr. Raimund Margreiter für sein Interesse und seine Unterstützung.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Buck LT, Hochachka PW, Schön A, Gnaiger E (1993) Microcalorimetric measurement of reversible metabolic suppression induced by anoxia in isolated hepatocytes. Am J Physiol 265: R1014 - R1019

    PubMed  CAS  Google Scholar 

  • Cerretelli P (1993) Aerobic and anaerobic metabolism in hypoxia in vertebrates. Verh Dtsch Zool Ges 86: 177–202

    Google Scholar 

  • Crow MT, Kushmerick MJ (1982) Chemical energetics of slow-and fast-twitch muscles of the mouse. J Gen Physiol 79: 147–166

    Article  PubMed  CAS  Google Scholar 

  • Driedzic WR, Gesser H (1994) Energy metabolism and contractility in ectothermic vertebrate hearts: hypoxia, acidosis, and low temperature. Physiol Rev 74: 221–258

    PubMed  CAS  Google Scholar 

  • Ferguson RA, Boutilier RG (1989) Metabolic-membrane coupling in red blood cells of trout: the effects of anoxia and adrenergic stimulation. J Exp Biol 143: 149–164

    PubMed  CAS  Google Scholar 

  • Gnaiger E (1977) Thermodynamic considerations of invertebrate anoxibiosis. In: Lamprecht I, Schaarschmidt B (eds) Applications of calorimetry in life sciences. De Gruyter, Berlin, pp 281–303

    Google Scholar 

  • Gnaiger E (1980) Energetics of invertebrate anoxibiosis: direct calorimetry in aquatic oligochaetes. FEBS Lett 112: 239–242

    Article  PubMed  CAS  Google Scholar 

  • Gnaiger E (1983) Heat dissipation and energetic efficiency in animal anoxibiosis. Economy contra power. J Exp Zool 228: 471–490

    Article  CAS  Google Scholar 

  • Gnaiger E (1991) Animal energetics at very low oxygen: information from calorimetry and respirometry. In: Woakes R, Grieshaber M, Bridges CR (eds) Strategies for gas exchange and metabolism. Cambridge Univ Press, London (Soc Exp Biol Sem Ser 44: 149–171)

    Google Scholar 

  • Gnaiger E (1993a) Efficiency and power strategies under hypoxia. Is low efficiency at high glycolytic ATP production a paradox? In: Hochachka PW, Lutz PL, Sick T, Rosenthal M, Van den Thillart G (eds) Surviving hypoxia: mechanisms of control and adaptation. CRC, Boca Raton Ann Arbor London Tokyo, pp 77–109

    Google Scholar 

  • Gnaiger E (1993b) Homeostatic and microxic regulation of respiration in transitions to anaerobic metabolism. In: Bicudo JEPW (ed) The vertebrate gas transport cascade: adaptations to environment and mode of life. CRC, Boca Raton Ann Arbor London Tokyo, pp 358–370

    Google Scholar 

  • Gnaiger E (1993c) Nonequilibrium thermodynamics of energy transformations. Pure Appl Chem 65: 1983–2002

    Article  CAS  Google Scholar 

  • Gnaiger E, Kemp RB (1990) Anaerobic metabolism in aerobic mammalian cells. Information from the ratio of calorimetric heat flux and respirometric oxygen flux. Biochim Biophys Acta 1016: 328–332

    Article  PubMed  CAS  Google Scholar 

  • Hand SC (1993) pHi and anabolic arrest during anoxia in Artemia franciscana embryos. In: Hochachka PW, Lutz PL, Sick T, Rosenthal M, Van den Thillart G (eds) Surviving hypoxia: mechanisms of control and adaptation. CRC, Boca Raton Ann Arbor London Tokyo, pp 171–185

    Google Scholar 

  • Hand SC, Gnaiger E (1988) Anaerobic dormancy quantified in Artemia embryos: a calorimetric test of the control mechanism. Science 239: 1425–1427

    Article  PubMed  CAS  Google Scholar 

  • Heldmaier G (1993) Seasonal acclimatization of small mammals. Verh Dtsch Zool Ges 86: 67–77

    Google Scholar 

  • Hochachka PW (1986) Defense strategies against hypoxia and hypothermia. Science 231: 234–241.

    Article  PubMed  CAS  Google Scholar 

  • Hochachka PW, Somero GN (1984) Biochemical adaptation. Princeton University Press, Princeton NJ

    Google Scholar 

  • Hontoria F, Crowe JH, Crowe LM, Amat F (1993) Metabolic heat production by Anemia embryos under anoxic conditions. J Exp Biol 178: 149–159

    Google Scholar 

  • Land SC, Hochachka PW (1994) Protein turnover during metabolic arrest in turtle hepatocytes: role and energy dependence of proteilysis. Am J Physiol 266: C1028–C1036

    PubMed  CAS  Google Scholar 

  • Malan A (1993) pH and metabolic depression in mammalian hibernation. The example of brown adipose tissue. In: Hochachka PW, Lutz PL, Sick T, Rosenthal M, Van den Thillart G (eds) Surviving hypoxia: mechanisms of control and adaptation. CRC, Boca Raton Ann Arbor London Tokyo, pp 201–214

    Google Scholar 

  • Prigogine I (1980) From being to becoming. Time and complexity in the physical sciences. Freeman, New York

    Google Scholar 

  • Rosenthal M, Lamanna JC, Joebsis FF, Levasseur JE, Kontos HA, Patterson JL (1976) Effects of respiratory gases on cytochonrome a in intact cerebral cortex: Is there a critical po,? Brain Res 108: 143–154

    Article  PubMed  CAS  Google Scholar 

  • Suurkuusk J, Wadsö I (1982) A multiple channel modular microcalorimeter. Chim Scripta 20: 155–163

    CAS  Google Scholar 

  • Wiesner RJ, Kreutzer U, Rösen P, Grieshaber MK (1988) Subcellular distribution of malateaspartate cycle intermediates during normoxia and anoxia in the heart. Biochim Biophys Acta 936: 114–123

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gnaiger, E. (1995). Zelluläre und mitochondriale Adaptationsvorgänge bei Hypoxie. In: Rügheimer, E. (eds) Respiratorische Therapie nach operativen Eingriffen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78399-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78399-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57047-9

  • Online ISBN: 978-3-642-78399-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics