Advertisement

Zelluläre und mitochondriale Adaptationsvorgänge bei Hypoxie

  • E. Gnaiger
Conference paper

Zusammenfassung

Verglichen mit den Adaptationsvorgängen an Hypoxie, die auf biochemischem und molekularem Gebiet in der Humanphysiologie und klinischen Bioenergetik bekannt sind, weisen die Anpassungen an O2-Mangel im gesamten Tierreich eine erstaunliche Komplexität und Flexibilität metabolischer Stoffwechselprozesse auf (Gnaiger 1993a). Ökologisch ist die Hypoxie besonders in aquatischen Lebensräumen ausgeprägt, was auf die 30- bis 50fach geringere Sättigungskonzentration von Sauerstoff in Wasser im Vergleich mit Luft zurückzuführen ist. Doch auch die Zellen des menschlichen Organismus befinden sich in einem wässrigen Mikromilieu, in dem bei Drosselung der O2-Zufuhr ein schnelles Abfallen des intrazellulären pO2 die Folge ist.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Buck LT, Hochachka PW, Schön A, Gnaiger E (1993) Microcalorimetric measurement of reversible metabolic suppression induced by anoxia in isolated hepatocytes. Am J Physiol 265: R1014 - R1019PubMedGoogle Scholar
  2. Cerretelli P (1993) Aerobic and anaerobic metabolism in hypoxia in vertebrates. Verh Dtsch Zool Ges 86: 177–202Google Scholar
  3. Crow MT, Kushmerick MJ (1982) Chemical energetics of slow-and fast-twitch muscles of the mouse. J Gen Physiol 79: 147–166PubMedCrossRefGoogle Scholar
  4. Driedzic WR, Gesser H (1994) Energy metabolism and contractility in ectothermic vertebrate hearts: hypoxia, acidosis, and low temperature. Physiol Rev 74: 221–258PubMedGoogle Scholar
  5. Ferguson RA, Boutilier RG (1989) Metabolic-membrane coupling in red blood cells of trout: the effects of anoxia and adrenergic stimulation. J Exp Biol 143: 149–164PubMedGoogle Scholar
  6. Gnaiger E (1977) Thermodynamic considerations of invertebrate anoxibiosis. In: Lamprecht I, Schaarschmidt B (eds) Applications of calorimetry in life sciences. De Gruyter, Berlin, pp 281–303Google Scholar
  7. Gnaiger E (1980) Energetics of invertebrate anoxibiosis: direct calorimetry in aquatic oligochaetes. FEBS Lett 112: 239–242PubMedCrossRefGoogle Scholar
  8. Gnaiger E (1983) Heat dissipation and energetic efficiency in animal anoxibiosis. Economy contra power. J Exp Zool 228: 471–490CrossRefGoogle Scholar
  9. Gnaiger E (1991) Animal energetics at very low oxygen: information from calorimetry and respirometry. In: Woakes R, Grieshaber M, Bridges CR (eds) Strategies for gas exchange and metabolism. Cambridge Univ Press, London (Soc Exp Biol Sem Ser 44: 149–171)Google Scholar
  10. Gnaiger E (1993a) Efficiency and power strategies under hypoxia. Is low efficiency at high glycolytic ATP production a paradox? In: Hochachka PW, Lutz PL, Sick T, Rosenthal M, Van den Thillart G (eds) Surviving hypoxia: mechanisms of control and adaptation. CRC, Boca Raton Ann Arbor London Tokyo, pp 77–109Google Scholar
  11. Gnaiger E (1993b) Homeostatic and microxic regulation of respiration in transitions to anaerobic metabolism. In: Bicudo JEPW (ed) The vertebrate gas transport cascade: adaptations to environment and mode of life. CRC, Boca Raton Ann Arbor London Tokyo, pp 358–370Google Scholar
  12. Gnaiger E (1993c) Nonequilibrium thermodynamics of energy transformations. Pure Appl Chem 65: 1983–2002CrossRefGoogle Scholar
  13. Gnaiger E, Kemp RB (1990) Anaerobic metabolism in aerobic mammalian cells. Information from the ratio of calorimetric heat flux and respirometric oxygen flux. Biochim Biophys Acta 1016: 328–332PubMedCrossRefGoogle Scholar
  14. Hand SC (1993) pHi and anabolic arrest during anoxia in Artemia franciscana embryos. In: Hochachka PW, Lutz PL, Sick T, Rosenthal M, Van den Thillart G (eds) Surviving hypoxia: mechanisms of control and adaptation. CRC, Boca Raton Ann Arbor London Tokyo, pp 171–185Google Scholar
  15. Hand SC, Gnaiger E (1988) Anaerobic dormancy quantified in Artemia embryos: a calorimetric test of the control mechanism. Science 239: 1425–1427PubMedCrossRefGoogle Scholar
  16. Heldmaier G (1993) Seasonal acclimatization of small mammals. Verh Dtsch Zool Ges 86: 67–77Google Scholar
  17. Hochachka PW (1986) Defense strategies against hypoxia and hypothermia. Science 231: 234–241.PubMedCrossRefGoogle Scholar
  18. Hochachka PW, Somero GN (1984) Biochemical adaptation. Princeton University Press, Princeton NJGoogle Scholar
  19. Hontoria F, Crowe JH, Crowe LM, Amat F (1993) Metabolic heat production by Anemia embryos under anoxic conditions. J Exp Biol 178: 149–159Google Scholar
  20. Land SC, Hochachka PW (1994) Protein turnover during metabolic arrest in turtle hepatocytes: role and energy dependence of proteilysis. Am J Physiol 266: C1028–C1036PubMedGoogle Scholar
  21. Malan A (1993) pH and metabolic depression in mammalian hibernation. The example of brown adipose tissue. In: Hochachka PW, Lutz PL, Sick T, Rosenthal M, Van den Thillart G (eds) Surviving hypoxia: mechanisms of control and adaptation. CRC, Boca Raton Ann Arbor London Tokyo, pp 201–214Google Scholar
  22. Prigogine I (1980) From being to becoming. Time and complexity in the physical sciences. Freeman, New YorkGoogle Scholar
  23. Rosenthal M, Lamanna JC, Joebsis FF, Levasseur JE, Kontos HA, Patterson JL (1976) Effects of respiratory gases on cytochonrome a in intact cerebral cortex: Is there a critical po,? Brain Res 108: 143–154PubMedCrossRefGoogle Scholar
  24. Suurkuusk J, Wadsö I (1982) A multiple channel modular microcalorimeter. Chim Scripta 20: 155–163Google Scholar
  25. Wiesner RJ, Kreutzer U, Rösen P, Grieshaber MK (1988) Subcellular distribution of malateaspartate cycle intermediates during normoxia and anoxia in the heart. Biochim Biophys Acta 936: 114–123PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • E. Gnaiger

There are no affiliations available

Personalised recommendations