Skip to main content

Integration of Hamiltonian Systems

  • Chapter
  • 373 Accesses

Part of the Ergebnisse der Mathematik und ihrer Grenzgebiete book series (MATHE3,volume 31)

Abstract

Differential equations and, in particular, the Hamilton equations can be divided into integrable and non-integrable. “However, trying to give an exact definition of integrability, we discover that many different definitions are possible and each of them is interesting from a certain theoretical point of view” (Birkhoff [23]). In this chapter we survey various approaches to the problem of integrability of Hamiltonian systems.

Keywords

  • Riemann Surface
  • Hamiltonian System
  • Hamilton Function
  • Vortex Line
  • Hamilton Equation

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-78393-7_3
  • Chapter length: 70 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-78393-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kozlov, V.V. (1996). Integration of Hamiltonian Systems. In: Symmetries, Topology and Resonances in Hamiltonian Mechanics. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78393-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78393-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78395-1

  • Online ISBN: 978-3-642-78393-7

  • eBook Packages: Springer Book Archive