Skip to main content

Renin-Angiotensin-System (RAS)

  • Chapter
ACE-Hemmer in Klinik und Praxis

Part of the book series: Aktuelle Therapieprinzipien in Kardiologie und Angiologie ((THERAPIEPRINZ.))

Zusammenfassung

Im Rückblick können wir heute 2 Eckdaten identifizieren, die entscheidende Durchbrüche für das Verständnis des Renin-Angiotensin-Systems (RAS) erbrachten.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Aceto JF, Baker KM (1990) [Sarl] angiotensin II receptor-mediated stimulation of protein synthesis in chick heart cells. Am J Physiol 258: 806–813

    Google Scholar 

  • Admiraal PJJ, Derkx FHM, Danser AHJ, Pieterman H, Schalekamp MADH (1990) Metabolism and production of angiotensin I in different vascular beds in subjects with hypertension. Hypertension 15: 44–55

    PubMed  CAS  Google Scholar 

  • Admiraal PJJ, Derkx FHM, Danser AHJ, Pieterman H, Schalekamp MADH (1990) Intrarenal de novo production of angiotensin I in subjects with renal artery stenosis. Hypertension 16: 555–563

    Google Scholar 

  • Aguilera G, Schirer A, Baukal A, Catt KJ (1980) Angiotensin II receptors. Properties and regulation in adrenal glomerulosa cells. Circ Res [Supply 1] 46: 118–127

    CAS  Google Scholar 

  • Alderman MH, Madhavan S, Ooi WL, Cohen H, Sealey JE, Laragh JH (1991) Association of the renin- sodium profile with the risk of myocardial infarction in patients with hypertension. N Engl J Med 324: 1098–1104 (1990)

    Google Scholar 

  • Baker KM, Aceto JF (1990) Angiotensin II stimulation of protein synthesis and cell growth in chick heart cells. Am J Physiol 259: 610–618

    Google Scholar 

  • Baker KM, Chernin MI, Wixson SK, Aceto JF (1990) Renin-angiotensin system involvement in pressure-overload cardiac hypertrophy in rats. Am J Physiol 259: H324–H332

    PubMed  CAS  Google Scholar 

  • Berk BC, Vekshtein V, Gordon HM, Tsuda T (1989) Angiotensin II-stimulated protein synthesis in cultured vascular smooth muscle cells. Hypertension 13: 305–314

    PubMed  CAS  Google Scholar 

  • Brunner HR, Laragh JH, Baer L, Newton MA, Goodwin FT, Krakoff LR, Bard RH, Bühler FR (1972) Essential hypertension: renin and aldosterone, heart attack and stroke. N Engl J Med 286: 441–449

    PubMed  CAS  Google Scholar 

  • Bumpus FM, Catt KJ, Chiu AT et al. (1991) Nomenclature for angiotensin receptors: A report of the nomenclature committee of the Council for High Blood Pressure Research. Hypertension 17: 720–721

    PubMed  CAS  Google Scholar 

  • Bunkenberg B, Amelsvoort T van, Rogg H, Wood JM (1992) Receptor-mediated effects of angiotensin II on growth of vascular smooth muscle cells from spontaneously hypertensive rats. Hypertension 20: 746–754

    Google Scholar 

  • Campagnole-Santos MJC, Diz Dl, Santos RAS, Khosla MC, Brosnihan KB, Ferrario CM (1989) Cardiovascular actions of angiotensin-(1-7) microinjected into the dorsomedial medulla of rats. Am J Physiol 257: H324–H329

    PubMed  CAS  Google Scholar 

  • Campbell DJ (1985) The site of angiotensin production. J Hypertens 3: 199–207

    PubMed  CAS  Google Scholar 

  • Campbell DJ (1987) Circulating and tissue angiotensin systems. J Clin Invest 79: 1–6

    PubMed  CAS  Google Scholar 

  • Campbell DJ, Kladis A (1990) Simultaneous radioimmunoassay of six angiotensin peptides in arterial and venous plasma of man. J Hypertens 8: 165–172

    PubMed  CAS  Google Scholar 

  • Campbell DJ, Kladis A, Skinner SL, Whitworth JA (1991) Characterization of angiotensin peptides in plasma of anephric man. J Hypertens 9: 265–274

    PubMed  CAS  Google Scholar 

  • Campbell-Boswell M, Robertson AL (1987) Effects of angiotensin II and vasopressin on human smooth muscle cells in vitro. Exp Mol Pathol 35: 265–276

    Google Scholar 

  • Catt K, Abbott A (1991) Molecular cloning of angiotensin II receptors may presage further receptor subtypes. Trends Pharmacol Sci 12: 279–281

    PubMed  CAS  Google Scholar 

  • Chaki S, Inagami T (1992) Identification and characterization of a new angiotensin II receptor subtype in differentiated neuro-2A cells (abstr). Hypertension 20: 397

    Google Scholar 

  • Crawford DC, Chobanian V, Brecher P (1992) Angiotensin II increases fibronectin expression in rat cardiac fibroblasts in vivo (abstr). Circulation 86: 1–89

    Google Scholar 

  • De Mello WC, Altieri P (1992) Effect of angiotensin II and enalapril on heart cell coupling (abstr). Circ Res 86: 1–9

    Google Scholar 

  • Derkx F, Wenting G, Man in’t Veld AJ, Verhoever RP, Schalenkamp MADH (1978) Control of enzymatically inctive renin in man under various pathological conditions: Implications for the interpretation of renin measurements in peripheral and renal venous plasma. Clin Sci Mol Med 54: 529–538

    Google Scholar 

  • des Senanayake P, Brosnihan B, Kumagi H, Moriguchi A, Martins A, Ganten D, Ferrario CM (1992) Plasma ANG-(l-7) is supressed in hypertensive transgenic rats (abstr). Hypertension 20: 437

    Google Scholar 

  • Diz DI, Goldfarb DA, Tubbs RR, Ferrario CM, Novick AC (1992) Angiotensin-(1-7) shows selectivity for AT-2 receptors in human renal cortex (abstr). Hypertension 20: 417

    Google Scholar 

  • Diz DI, Pirro NT (1992) Differential actions of angiotensin II and angiotensin-(1-7) on transmitter release. Hypertension 19: II.41–II. 48

    Google Scholar 

  • Douglas JG (1986) Regulation of angiotensin receptors. NIPS 1: 67–68

    CAS  Google Scholar 

  • Dubey RK, Roy A, Overbeck HW (1992) Culture of renal arteriolar smooth muscle cells: Mitogenic responses to angiotensin II. Circ Res 71: 1143–1152

    Google Scholar 

  • Dzau VJ (1989) Multiple pathways of angiotensin production in the blood vessel wall: evidence, possibilities and hypotheses. J Hypertens 7: 933–936

    PubMed  CAS  Google Scholar 

  • Dzau VJ, Baxter JA, Cantin M et al. (1987) Report of the joint nomenclature and standardization committe of the International Society of Hypertension, the American Heart Association, and the World Health Organization. Hypertension 10: 461–464

    Google Scholar 

  • Dzau VJ, Pratt RE (1992) Renin angiotensin system. In: Fozzard HA, Haber E, Jennings RB, Katz AM, Morgan HE (eds) The heart and cardiovascular system. Raven Press, New York, pp 1817–1849

    Google Scholar 

  • Elton TS, Stephan CC, Taylor GR, Kimball MG, Martin MM, Duran JN, Oparil S (1992) Isolation of two distinct type I angiotensin II receptor genes (abstr). Hypertension 20: 411

    Google Scholar 

  • Erdds EG (1990) Angiotensin I converting enzyme and the changes in our concepts through the years: Lewis K memorial lecture. Hypertension 16: 363–370

    Google Scholar 

  • Finckh M, Hellmann W, Ganten D, Furtwangler A, Allgeier J, Boltz M, Holtz J (1991) Enhanced cardiac angiotensinogen gene expression and angiotensin converting enzyme activity in tachypacing-induced heart failure in rats. Basic Res Cardiol 86: 303–316

    PubMed  CAS  Google Scholar 

  • Foult JM, Tavolaro O, Antony I, Nitenberg A (1988) Direct myocardial and coronary effects of enalaprilat in patients with dilated cardiomyopathy: assessment by a bilateral intracoronary infusion technique. Circulation 77: 337–344

    PubMed  CAS  Google Scholar 

  • Friedrich SP, Lorell BH, Douglas PS (1992) Intracardiac ACE inhibition improves diastolic distensibility in patients with left ventricular hypertrophy due to aortic stenosis (abstr). Circulation 86: 1–119

    Google Scholar 

  • Fukui K, Inoue H, Takahashi S, Miyake Y (1989) Biosynthesis of a renin binding protein. Biochem Biophys Res Comm 164: 265–270

    CAS  Google Scholar 

  • Galen FX, Devaux C, Hovot AM (1984) Renin biosynthesis of human tumoral juxtaglomerular cells. J Clin Invest 73: 1144–1155

    PubMed  CAS  Google Scholar 

  • Gasic S, Kleinbloesem CH, Heinz G, Waldhausl W (1991) Contribution of splanchnic and peripheral vascular tissues to the disposal of angiotensin II and to regional conversion rates or angiotensin I: a pilot study in humans. J Cardiovasc Pharnacol 17: 615–620

    CAS  Google Scholar 

  • Geisterfer AAT, Peach MJ, Owens GK (1988) Angiotensin II induces hypertrophy, not hyperplasia, of cultured rat aortic smooth muscle cells. Circ Res 62: 749–756

    PubMed  CAS  Google Scholar 

  • Goldblatt H, Lynch J, Hanzal RF, Summerville WW (1939) Studies on experimental hypertension I: The production of persistent elevation of systolic blood pressure by means of renal ischemia. J Exp Med 59: 347–380

    Google Scholar 

  • Goodfriend TL (1991) Angiotensins: A family that grows from within. Hypertension 17: 139–140

    PubMed  CAS  Google Scholar 

  • Goodfriend TL, Peach MJ (1975) Angiotensin III: (des-aspartic acidl)-angiotensin II. Circ Res 36 (Suppl I): 138–148

    Google Scholar 

  • Guyton AC, Coleman TG, Cowley AW, Scheel KW, Manning RD, Normal RA (1972) Arterial pressure regulation. Am J Med 52: 485–594

    Google Scholar 

  • Haber E (1976) The role of renin in normal and pathological cardiovascular homeostasis. Circulation 54: 849–861

    PubMed  CAS  Google Scholar 

  • Hall J (1986) Control of sodium excretion by angiotensin II: intrarenal mechanisms and blood pressure regulation. Am J Physiol 250: R960–R972

    PubMed  CAS  Google Scholar 

  • Hall JE, Brands MW (1992) The renin-angiotensin-aldosterone systems: Renal mechanisms and circulatory homeostasis. In: Seldin DW, Giebisch G (eds) The kidney: physiology and pathophysiology. Raven Press, New York

    Google Scholar 

  • Heinrikson RL, Hui J, Zurcher-Nelly H, Poorman RA (1989) A structural model to explain the partial catalytic activity of human prorenin. Am J Hypertens 2: 367–380

    PubMed  CAS  Google Scholar 

  • Hilgers KF, Mann JFE, Hilgenfeldt U, Ganten D (1991) Vascular production and regulation of angiotensin. Blood Vessels 28: 201–209

    PubMed  CAS  Google Scholar 

  • Hirakata H, Foud-Tarazi FM, Bumpus FM (1990) Angiotensins and the failing heart: enhanced positive inotropic response to angiotensin in cardiomyopthic hamster heart in the presence of captopril. Circ Res 66: 891–899

    PubMed  CAS  Google Scholar 

  • Hoit BD, Shao Y, Gabel M, Bauer B, Urata H, Husain A, Walsh RA (1992) Hemodynamic effects of an angiotensin II-forming chymase in conscious baboons with high renin hypertension (abstr). Circulation 86: 1–432

    Google Scholar 

  • Hollenberg NK, Chenitz WR, Adams DF, Williams GH (1974) Reciprocal influence of salt intake of adrenal glomerulosa and renal vascular responses to angiotensin II in normal man. J Clin Invest 54: 34–42

    PubMed  CAS  Google Scholar 

  • Holtz J (1992) Bedeutung der Myokardhypertrophie bei Herzinsuffizienz. Z Kardiol 81 [Suppl 4]: 41–48

    PubMed  Google Scholar 

  • Holtz J (1993) Pathophysiology of renal failure and the renin-angiotensin-system. In: Grobecker H, Heusch G, Strauer B (eds) Angiotensin and the heart. Steinkopff, Darmstadt/Springer, New York, pp 183–201

    Google Scholar 

  • Holtz J, Finckh M (1991) Pathophysiologic kardiorenaler Regelmechanismen bei Herzin-suffizienz. Z Kardiol 80 [Suppl 2]: 1–10

    PubMed  Google Scholar 

  • Hsueh WA, Baxter JD (1991) Human prorenin. Hypertension 17: 469–479

    Google Scholar 

  • Hsueh WA, Carlson JE, Dzau V (1983) Characterization of inactive renin from human kidney and plasma: evidence for a renal source of circulating inactive renin. J Clin Invest 71: 506–517

    PubMed  CAS  Google Scholar 

  • Ichikawa I, Pfeffer JM, Pfeffer MA, Hostetter TH, Brenner B (1984) Role of angiotensin II in the altered renal function of congestive heart failure. Circ Res 55: 669–675

    PubMed  CAS  Google Scholar 

  • Inagami T, Murakami K (1980) Prorenin. Biomed Res 1: 456–475

    Google Scholar 

  • Inagami T, Murakami T, Higuchi K, Nakajo S (1991) Role of vascular wall renin: intracellular and extracellular mechanism. Blood Vessels 28: 217–223

    PubMed  CAS  Google Scholar 

  • Jaiswal N, Diz DI, Chappell MC, Khosla MC Ferrario CM (1992) Stimulation of endothelial cell prosta-glandin production by angiotensin peptides. Hypertension 19:11. 49–11. 55

    Google Scholar 

  • Jaiswal RK, Tallant EA, Diz DI, Ferrario CM (1992) Alterations in prostaglandin production in SHR smooth muscle cells (abstr). Hypertension 20: 432

    Google Scholar 

  • Jenne DE, Tschopp J (1991) Angiotensin II-forming heart chymase is a mast-cell-specific enzyme. Biochem J 276: 567–568

    PubMed  CAS  Google Scholar 

  • Kinoshita A, Urata H, Bumpus FM, Husain A (1991) Multiple determinants for the high substrate specificity of an angiotensin II-forming chymase from the human heart. J Biol Chem 266: 19192–19197

    PubMed  CAS  Google Scholar 

  • Kirchheim H, Emke H, Persson P (1988) Physiology of the renal baroreceptor mechanism of renin release and its role in congestive heart failure. Am J Cardiol 62: 68E–71E

    PubMed  CAS  Google Scholar 

  • Kohara K, Brosnihan KB, Chappell MC, Khosla MC, Ferrario CM (1991) Angiotensin-(1-7): A member of circulating angiotensin peptides. Hypertension 17: 131–138

    Google Scholar 

  • Koibuchi Y, Gibbson GH, Pratt RE (1992) Role of TGF-ßl activation in the cellular growth response to Ang II (abstr). Hypertension 20: 418

    Google Scholar 

  • Landau C, Jacobs AK, Haudenschild CC (1992) Left ventricular hypertrophy induced by angiotensin II is accompanied by a dose dependent fibrotic response (abstr). Circulation 86: 1–754

    Google Scholar 

  • Laragh JH (1989) Nephron heterogeneity: clue to the pathogenesis of essential hypertension and effectiveness of angiotensin-converting enzyme-inhibitor treatment. Am J Med 87 [Suppl 6B]: S2 - S14

    Google Scholar 

  • Laragh JH, Baer L, Brunner HR, Bühler FR, Sealey JE, Vaughan ED (1972) Renin, angiotensin and aldosteron system in pathogenesis and management of hypertensive vascular disease. Am J Med 52: 633–652

    PubMed  CAS  Google Scholar 

  • Lee WH, Packer M (1986) Prognostic importance of serum sodium concentration and its modification by converting-enzyme inhibition in patients will severe chronic heart failure Circulation 73: 257–267

    CAS  Google Scholar 

  • Lewis JL, Serikawa T, Warnock DG (1992) Chromosomal localization of type 1A and IB angiotensin II receptor in the rat (abstr). Hypertension 20: 411

    Google Scholar 

  • Lindpaintner K, Lu W, Niedermaier N, Schieffer B, Just H, Ganten D, Drexler H (1993) Selective activation of cardiac angiotensinogen gene expression in post-infarction ventricular remodeling in the rat. J Mol Cell Cardiol 25: 133–143

    PubMed  CAS  Google Scholar 

  • Liu FY, Cogan MG (1989) Angiotensin II stimulation of hydrogen ion secretion in the rat early proximal convoluted tubule. J Clin Invest 82: 601–607

    Google Scholar 

  • Liu FY, Cogan MG (1989) Angiotensin II stimulates early proximal bicarbonate absorbtion in the rat by decreasing cyclic adenosine monophosphate. J Clin Invest 84: 83–91

    PubMed  CAS  Google Scholar 

  • Lombes M, Oblin ME, Gasc JM, Baulieu EE, Farman N, Bonvalet JP (1991) Immunohistochemical and biochemical evidence for a cardiovascular mineralocorticoid receptor. Circ Res 71: 503–510

    Google Scholar 

  • Loudon M, Bing RF, Thurston H, Swales JD (1983) Arterial wall uptake of renal renin and blood pressure control. Hypertension 5: 629–634

    PubMed  CAS  Google Scholar 

  • Lyall F, Morton JJ, Lever AF, Cragoe EJ (1988) Angiotensin II activates Na+-H+ exchange and stimulates growth in vascular smooth muscle cells. J Hypertens 6: 438–441

    Google Scholar 

  • Lynch KR, Peach MJ (1991) Molecular biology of angiotensinogen. Hypertension 17: 263–269

    PubMed  CAS  Google Scholar 

  • Millan MA (1989) Novel sites of expression of functional angiotensin II receptors in the late gestation fetus. Science 244: 1340–1342

    PubMed  CAS  Google Scholar 

  • Mizuno K, Higashimori K, Stone WJ, Shimamoto K, Fukuchi S, Inagami T (1990) Re-evaluation of the plasma renin-angiotensin system in anephric patients. Clin Exp Hypertens [A] 12: 1135–1157

    CAS  Google Scholar 

  • Mizuno K, Tani M, Niimura S et al. (1989) Direct evidence for local generation and release of angiotensin II in human vascular tissue. Biochem Biophys Res Comm 165: 457–463

    PubMed  CAS  Google Scholar 

  • Morishita R, Gibbson G, Kaneda Y, Ogihara T, Dzau V (1992) Novel gene transfer method for study of vascular renin-angiotensin system ( RAS) (abstr ). Hypertension 20: 441

    Google Scholar 

  • Mulvany MJ, Aalkajaer C (1990) Structure and function of small arteries. Physiol Rev 70: 921–961

    PubMed  CAS  Google Scholar 

  • Munoz JM, Braun-Menendez E, Fasciolo JC, Leloir LF (1939) Hypertensin: the substance causing renal hypertension. Nature 144: 980

    Google Scholar 

  • Murphy TJ, Alexander RW, Griendling KK, Runge MS, Bernstein KE (1991) Isolation of a cDNA endocing the vascular type-1 angiotensin II receptor. Nature 351: 233–236

    PubMed  CAS  Google Scholar 

  • Naftilan AJ, Pratt RE, Dzau VJ (1989) Induction of platelet-derived growth factor A-chain and c-myc gene expression by angiotensin II in cultured rat vascular smooth muscle cells. J Clin Invest 83: 1419–1424

    PubMed  CAS  Google Scholar 

  • Nakamaru M, Jackson EK, Inagami T (1986) P-Adrenoceptor-mediated release of angiotensin II from mesenteric arteries. Am J Physiol 250: H144–H148

    PubMed  CAS  Google Scholar 

  • Nussberger J, Brunner DB, Waeber B, Brunner HR (1985) True versus ipmunoreactive angiotensin II in human plasma. Hypertension 7 [Suppl. I]: 11–17

    Google Scholar 

  • Nussberger J, Brunner DB, Waeber B, Brunner HR (1986) Specific measurement of angiotensin metabolites and in vitro generated angiotensin II in plasma. Hypertension 8: 476–482

    PubMed  CAS  Google Scholar 

  • Owens GK, Schwartz SM, McCanna M (1985) Evaluation of medial hypertrophy in resistance vessels of spontaneously hypertensive rats. Hypertension 11: 695–705

    Google Scholar 

  • Packer M (1987) Why do kidneys release renin in patients with congestive heart failure? A nephrocentric view of converting-enzyme inhibition. Am J Cardiol 60: 179–184

    PubMed  CAS  Google Scholar 

  • Packer M, Lee WH, Kessler PD (1986) Preservation of glomerular filtration rate in human heart failure by activation of the renin-angiotensin system. Circulation 74: 766–774

    PubMed  CAS  Google Scholar 

  • Page IH, Helmer OM (1940) A crystalline pressor substance (angiotonin) resulting from the action between renin and renin-activator. J Exp Med 71: 29–42

    PubMed  CAS  Google Scholar 

  • Paquet J-L, Baudouin-Legros M, Brunelle G, Meyer P (1990) Angiotensin II-induced proliferation of aortic myocytes in spontaneously hypertensive rats. J Hypertens 8: 565–572

    PubMed  CAS  Google Scholar 

  • Pawlowski-Dahm Corinn, Fink GD (1992) Chronic intravenous infusion of angiotensin (1-7) produces increases in circulating vasopressin but not arterial pressure (abstr). Hypertension 20: 437

    Google Scholar 

  • Pratt RE, Carleton JE, Richie JP, Heusser C, Dzau VJ (1987) Human renin biosynthesis and secretion in normal and ischemic kidneys. Proc Natl Acad Sci USA 84: 7837–7840

    PubMed  CAS  Google Scholar 

  • Quinn SJ, Williams GH (1988) Regulation of aldosterone secretion. Annu Rev Physiol 50: 409–426

    PubMed  CAS  Google Scholar 

  • Richards AM, Wittert GA, Espiner EA, Yandle TG, Ikram H, Frampton C (1992) Effect of inhibition of endopeptidase 24.11 on responses to angiotensin II in human volunteers. Circ Res 71: 1501–1507

    PubMed  CAS  Google Scholar 

  • Robertson JIS (1986) Circulatory basis for the use of angiotensin converting eniyme inhibitors in hypertension and cardiac failure. J Cardiovasc Pharmacol 8 [Suppl 1]: S2–S8

    PubMed  Google Scholar 

  • Rubin SA (1992) Alternative splicing of the angiotensin II receptor message is tissue specific in the cardiovascular system (abstr). Circ Res 86: 1–175

    Google Scholar 

  • Santos RAS, Brosnihan KB, Jacobsen DW, DiCorleto PE, Ferrario CM (1992) Production of angio-tensin-(1-7) by human vascular endothelium. Hypertension 19:11. 56–11. 61

    Google Scholar 

  • Sasaki K, Yamano Y, Bardhan S et al. (1991) Cloning and expression of a complementary DNA encoding a bovine adrenal angiotensin II type-1 receptor. Nature 351: 230–233

    PubMed  CAS  Google Scholar 

  • Sasamura H, Hein L, Krieger JE, Pratt RE, Kobilka BK, Dzau VJ (1992) Molecular evidence for two angiotensin (AT-I) receptor isoforms: Tissue distribution and functional implications (abstr). Hypertension 20: 416

    Google Scholar 

  • Schiavone MT, Santos RAS, Brosnihan KB, Khosla MC, Ferrario CM (1988) Release of vasopressin from the rat hypothalamo-neurohypophysial system by angiotensin-(1-7) heptapeptide. Proc Natl Acad Sci USA 85: 4095–4098

    PubMed  CAS  Google Scholar 

  • Schnermann J, Briggs JP (1992) Function of the juxtaglomerular apparatus: control of glomerular hemodynamic and renin secretion In: Seldin DW, Giebisch G (eds) The kidney: physiology and pathophysiology. Raven Press, New York, pp 1249–1290

    Google Scholar 

  • Schorb W, Booz GW, Dostal DE, Chang KC, Baker KM (1992) Angiotensin II receptor mediated growth of cardiac fibroblasts (abstr). Circulation 86: 189

    Google Scholar 

  • Schwartz SM, Heimark RL, Majesky MW (1990) Developmental mechanisms underlying pathology of arteries. Physiol Rev 70: 1177–1209

    PubMed  CAS  Google Scholar 

  • Schwyzer R, Sieber P (1956) New synthesis in the peptide field. Chimia 10: 265

    CAS  Google Scholar 

  • Scott-Burden T, Resink TJ, Hahn A WA, Bühler FR (1991) Angiotensin-induced growth related metabolism is activated in cultured smooth muscle cells from spontaneously hyertensive rats and Wistar- Kyoto rats. Am J Hypertens 4: 183–188

    PubMed  CAS  Google Scholar 

  • Sealey JE, Atlas SA, Laragh JH (1980) Prorenin and other large molecular weight forms of renin. Endocrinol Rev 1: 365–391

    CAS  Google Scholar 

  • Sealey JE, Blumenfeld JD, Bell GM, Pecker MS, Sommers SC, Laragh JH (1988) On the renal basis for essential hypertension: nephron heterogeneity with discordant renin secretion and sodium excretion causing a hypertensive vasoconstriction-volume relationship. J Hypertens 6: 763–111

    PubMed  CAS  Google Scholar 

  • Sealey JE, Rubattu S (1989) Prorenin and renin as separate mediators of tissue and circulating systems. Am J Hypertens 2: 358–366

    PubMed  CAS  Google Scholar 

  • Shinagawa T, Do YS, Baxter JD, Carilli C, Schilling J, Hsueh WA (1990) Identification of an enzyme in human kidney that correctly processes prorenin. Proc Natl Acad Sci USA 87: 1927–1931

    PubMed  CAS  Google Scholar 

  • Smrka AV, Hepler JR, Brown KO, Sternweis P (1991) Regulation of polyphosphoinositide-specific phospholipase C activity by purified G9. Science 251: 804–807

    Google Scholar 

  • Soubrier F, Alhenc-Gelas F, Hubert C, Allegrini J, John M, Tregear G, Corvol P (1988) Two putative active centers in human angiotensin I converting enzyme revealed by molecular cloning. Proc Natl Acad Sci USA 85: 9286–9390

    Google Scholar 

  • Stoll M, Metsärinne KP, Gohlke P, Paul M, Unger T (1992) Proliferation of rat heart capillary endothelial cells is attenuated by angiotensin II (abstr). Hypertension 20: 418

    Google Scholar 

  • Sudhir K, Wilson E, Chatterjee K, Ives HE (1992) Mechanical stretch potentiates angiotensin II induced proliferation in cultured vascular smooth muscle cells (abstr). Hypertension 20: 417

    Google Scholar 

  • Summers C, Fregly MJ (1989) Modulation of angiotensin II binding sites in neuronal cultures by mineralocorticoids. Am J Physiol 256: 121–129

    Google Scholar 

  • Takeuchi K, Murphy TJ, Nakamura Y, Alexander RW (1992) Molecular cloning of the rat vascular At-1 angiotensin II receptor gene (abstr). Hypertension 20: 411

    Google Scholar 

  • Taylor GM, Carmichael DJS, Peart WS (1986) Active and inactive renin in anephric man: a comparison of molecular weight studies with normal human plasma and the effect of a specific monoclonal anti-renin antibody. J Hypertens 4: 703–712

    PubMed  CAS  Google Scholar 

  • Taylor SJ, Smith JA, Exton JH (1990) Purification from bovine liver membranes of a guanine nucleotide-dependent activator of phosphoinositide-specific phospholipase C. Immunologic identification as a novel G-protein alpha subunit. J Biol Chem 265: 17150–17156

    Google Scholar 

  • Tewksbury DA (1990) Angiotensinogen: Biochemistry and molecular biology. Ia: Laragh JH, Brenner BM (eds) Hypertension: Pathobiology, diagnosis and management, vol 1. Raven Press, New York, pp 1197–1216

    Google Scholar 

  • Tigerstedt R, Bergman PG (1898) Niere und Kreislauf. Scand Arch Physiol 8: 223–271

    Google Scholar 

  • Timmermans PBMWM, Wong PC, Chiu AT, Herblin WF (1991) Nonpeptide angiotensin II receptor antagonists. Trends Pharmacol Sci 12: 55–62

    Google Scholar 

  • Tsuda T, Kawahara Y, Ishida Y, Koide M, Shii K, Yokoyama M (1992) Angiotensin II stimulates two myelin basic protein/microtubule-associated protein 2 kinases in cultured vascular smooth muscle cells. Circ Res 71: 620–630

    PubMed  CAS  Google Scholar 

  • Ullian ME, Hutchison FN, Morinelli TA (1992) Aldosterone potentiation of angiotensin II-stimulated protein synthesis (abstr). Hypertension 20: 418

    Google Scholar 

  • Ullian ME, Schelling JR, Linas SL (1992) Aldosterone enhances angiotensin II receptor binding and inositol phosphate responses. Hypertension 20: 67–73

    PubMed  CAS  Google Scholar 

  • Urata H, Healy B, Stewart RW, Bumpus FM, Husain A (1990) Angiotensin II-forming pathways in normal and failing hearts. Circ Res 66: 883–890

    PubMed  CAS  Google Scholar 

  • Urata H, Kinoshita A, Misono KS, Bumpus FM, Husain A (1990) Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human heart. J Biol Chem 265: 22348–22357

    PubMed  CAS  Google Scholar 

  • Urata H, Kinoshita A, Perez DM, Misono KS, Bumpus FM, Graham RM, Husain A (1991) Cloning of the gene and cDNA for human heart chymase. J Biol Chem 266: 17173–17179

    PubMed  CAS  Google Scholar 

  • Walker E, Patton CM (1992) Novel vascular angiotensin receptor subtypes and signal pathway in fowl (abstr). Hypertension 20: 435

    Google Scholar 

  • Wang PH, Do YS, Macaulay L, Shinagawa T, Anderson PW, Baxter JD, Hsueh WA (1991) Identification of renal cathepsin B as a human prorenin Processing enzyme. J Biol Chem 266: 12633–12638

    PubMed  CAS  Google Scholar 

  • Webb DJ, Cumming AMM et al. (1984) Changes in active and inactive renin and in angiotensin II across the kidney in essential hypertension and renal artery stenosis. J Hypertens 2: 605–614

    PubMed  CAS  Google Scholar 

  • Wilkes BM, Mento PF, Pearl AR et al. (1991) Plasma angiotensins in anephric humans: evidence for an extrarenal angiotensin system. J Cardio vase Pharmacol 17: 419–423

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Holtz, J. (1996). Renin-Angiotensin-System (RAS). In: Dominiak, P., Bönner, G. (eds) ACE-Hemmer in Klinik und Praxis. Aktuelle Therapieprinzipien in Kardiologie und Angiologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78376-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78376-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56990-9

  • Online ISBN: 978-3-642-78376-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics